Narrow your search
Listing 1 - 9 of 9
Sort by

Dissertation
Master thesis : Aerodynamic Modelling for the Flutter Analysis of the Sonaca 200 Aircraft
Authors: --- --- --- ---
Year: 2018 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Certification of an aircraft is a long and demanding process required by airworthiness requirements of international organisms such as the European Aviation Safety Agency. Being intended to flight schools market, the general aviation Sonaca 200 aircraft has to fulfil huge amount of prerequisites defined by the Certification Specification for Very Light Aeroplane. Among the standards, free-flutter conditions have to be respected and demonstrated by the manufacturer, Sonaca Aircraft. This work concerns the aerodynamic and flutter analyses of a simplified wing model of the Sonaca 200 aircraft. The former study in performed thanks to a
time-stepping implementation, developed by KATZ J., of the unsteady Vortex Lattice method. The algorithm is adjusted in order to provide a minimum convergence time to reach a well-defined results accuracy. The method based on the incompressible potential flow theory is adapted to the S200 wing and validated through a comparison with the Sonaca Aircraft aerodynamic results for a flight situation encountered at dive speed and limit load factor. The parallel is carried out in terms of total and spanwise aerodynamic coefficients induced by the lifting surface. The validation of the first method leads to the consideration of the flutter analysis.
The second implementation of the unsteady Vortex Lattice method is developed by DIMITRIADIS G. in the frequency domain. This development, combined with a condensate finite element model of the wing, allows to compute the unsteady aerodynamic loads through a Generalised Force Matrix. The modal equations of motion are then solved with the help of a Newton-Raphson scheme and a p-k method. The second wing mode caused the instability leading to the flutter phenomenon caused by a lack of damping at high speed. The flight envelop of the wing is free from flutter in control surfaces blocked and empty fuel tanks setup. Altitude has an influence on the flutter speed and frequency. The critical case appears for a service ceiling altitude on a wing
with its implemented wing-tips. Static wing deflections are derived from the method. Further improvements of the aeroelastic model can be performed in order to verify the free-flutter behaviour of the whole Sonaca 200 aircraft in all possible flight conditions.


Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.


Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.


Book
Characterization and Modelling of Composites
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Composites have increasingly been used in various structural components in the aerospace, marine, automotive, and wind energy sectors. The material characterization of composites is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue aims to solicit papers concerning promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review process and will only be considered for publication if they meet journal standards. Selected top articles may have their processing charges waived at the recommendation of reviewers and the Guest Editor.

Keywords

Research & information: general --- structural dynamics --- composite plastics --- stiffness --- damping --- fiber orientation --- ODF --- viscoelasticity --- geopolymer concrete --- fly-ash --- bottom-ash --- freeze-thaw --- leachability --- non-destructive test --- TCLP --- RFT --- fiber matrix interface --- finite element analysis --- characterization --- composite --- measurements --- testing --- structural monitoring --- flax-epoxy composite --- interlaminar fracture energy --- fracture toughness --- delamination --- Mode I --- Mode II and Mixed-mode I-II interlaminar fracture --- critical energy release rate --- machine learning --- mould filling simulations --- composite materials --- liquid moulding --- lattice cell structures --- InsideBCC --- equivalent solid properties --- three-dimensional printing --- nacre --- hexagonal tablets --- analytical model --- finite element simulations --- Abaqus --- fused filament fabrication --- PLA --- bamboo --- mechanical strength --- damage detection --- laminated composite plates --- modal analysis --- curvature mode shape --- strain energy --- structural dynamics --- composite plastics --- stiffness --- damping --- fiber orientation --- ODF --- viscoelasticity --- geopolymer concrete --- fly-ash --- bottom-ash --- freeze-thaw --- leachability --- non-destructive test --- TCLP --- RFT --- fiber matrix interface --- finite element analysis --- characterization --- composite --- measurements --- testing --- structural monitoring --- flax-epoxy composite --- interlaminar fracture energy --- fracture toughness --- delamination --- Mode I --- Mode II and Mixed-mode I-II interlaminar fracture --- critical energy release rate --- machine learning --- mould filling simulations --- composite materials --- liquid moulding --- lattice cell structures --- InsideBCC --- equivalent solid properties --- three-dimensional printing --- nacre --- hexagonal tablets --- analytical model --- finite element simulations --- Abaqus --- fused filament fabrication --- PLA --- bamboo --- mechanical strength --- damage detection --- laminated composite plates --- modal analysis --- curvature mode shape --- strain energy


Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.

Keywords

Technology: general issues --- probabilistic data-interpretation --- Bayesian model updating --- error-domain model falsification --- iterative asset-management --- practical applicability --- computation time --- swarm-based parallel control (SPC) --- Internet of Things (IoT) --- soil-structure interaction (SSI) --- semi-active control --- adjacent buildings --- Bayesian inference --- model updating --- modal identification --- structural dynamics --- bridges --- sensor placement optimisation --- structural health monitoring --- damage identification --- mutual information --- evolutionary optimisation --- inertial sensor fusion --- instrumented particle --- MEMS --- sediment entrainment --- sensor calibration --- frequency of entrainment --- varying environmental and operational conditions --- damage detection and localization --- Gaussian process regression --- autoregressive with exogenous inputs --- distributed sensor network --- mode shape curvatures --- probabilistic data-interpretation --- Bayesian model updating --- error-domain model falsification --- iterative asset-management --- practical applicability --- computation time --- swarm-based parallel control (SPC) --- Internet of Things (IoT) --- soil-structure interaction (SSI) --- semi-active control --- adjacent buildings --- Bayesian inference --- model updating --- modal identification --- structural dynamics --- bridges --- sensor placement optimisation --- structural health monitoring --- damage identification --- mutual information --- evolutionary optimisation --- inertial sensor fusion --- instrumented particle --- MEMS --- sediment entrainment --- sensor calibration --- frequency of entrainment --- varying environmental and operational conditions --- damage detection and localization --- Gaussian process regression --- autoregressive with exogenous inputs --- distributed sensor network --- mode shape curvatures


Book
Characterization and Modelling of Composites
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Composites have increasingly been used in various structural components in the aerospace, marine, automotive, and wind energy sectors. The material characterization of composites is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue aims to solicit papers concerning promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review process and will only be considered for publication if they meet journal standards. Selected top articles may have their processing charges waived at the recommendation of reviewers and the Guest Editor.


Book
Coastal Geohazard and Offshore Geotechnics
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering.

Keywords

Technology: general issues --- wave motion --- offshore deposits --- seabed response --- FEM --- pore pressure --- wave-current-seabed interaction --- RANS equations --- k-ε model --- current velocity --- seabed liquefaction --- liquefaction --- lateral displacement --- response surface method (RSM) --- artificial neural network (ANN) --- wave action --- silty sand --- seepage flow --- soil erosion --- pore-pressure accumulation --- three-phase soil model --- immersed tunnel --- trench --- numerical study --- porous seabed --- pumping well test --- groundwater fluctuation --- stratum deformation --- micro-confined aquifer --- wave-current-seabed interaction --- Reynolds-Averaged Navier-Stokesequations --- buried pipeline --- k-ε turbulence model --- oscillatory liquefaction --- wave-soil-pipeline interactions --- meshfree model --- local radial basis functions collocation method --- hydrate-bearing sediments --- damage statistical constitutive model --- multi-field coupling --- wellbore stability --- bridge scour --- identification --- ambient vibration --- field application --- natural frequency --- mode shape --- superstructure --- cable-stayed bridge --- Principal stress rotation --- dynamic loading --- wave (current)-induced soil response --- open-ended pile --- soil plug --- offshore wind turbines --- lateral cyclic loading --- model test --- discrete element simulation --- rock-socketed piles --- monopiles --- impedances --- dynamic responses --- buoyancy --- bottom-supported foundation --- field test --- numerical analysis --- giant submarine landslides --- shelf break --- South China Sea --- Himalayan orogeny --- repeated submarine landslides --- coastal-embankment slope --- stability --- unsaturated soil --- multilayered --- matric suction --- random searching algorithm --- rainfall infiltration --- scour --- soft clay --- monopile --- stress history --- hypoplastic model --- submarine pipeline --- dense seabed foundation --- seismic dynamics --- resonance of submarine pipeline --- FSSI-CAS 2D --- wave motion --- offshore deposits --- seabed response --- FEM --- pore pressure --- wave-current-seabed interaction --- RANS equations --- k-ε model --- current velocity --- seabed liquefaction --- liquefaction --- lateral displacement --- response surface method (RSM) --- artificial neural network (ANN) --- wave action --- silty sand --- seepage flow --- soil erosion --- pore-pressure accumulation --- three-phase soil model --- immersed tunnel --- trench --- numerical study --- porous seabed --- pumping well test --- groundwater fluctuation --- stratum deformation --- micro-confined aquifer --- wave-current-seabed interaction --- Reynolds-Averaged Navier-Stokesequations --- buried pipeline --- k-ε turbulence model --- oscillatory liquefaction --- wave-soil-pipeline interactions --- meshfree model --- local radial basis functions collocation method --- hydrate-bearing sediments --- damage statistical constitutive model --- multi-field coupling --- wellbore stability --- bridge scour --- identification --- ambient vibration --- field application --- natural frequency --- mode shape --- superstructure --- cable-stayed bridge --- Principal stress rotation --- dynamic loading --- wave (current)-induced soil response --- open-ended pile --- soil plug --- offshore wind turbines --- lateral cyclic loading --- model test --- discrete element simulation --- rock-socketed piles --- monopiles --- impedances --- dynamic responses --- buoyancy --- bottom-supported foundation --- field test --- numerical analysis --- giant submarine landslides --- shelf break --- South China Sea --- Himalayan orogeny --- repeated submarine landslides --- coastal-embankment slope --- stability --- unsaturated soil --- multilayered --- matric suction --- random searching algorithm --- rainfall infiltration --- scour --- soft clay --- monopile --- stress history --- hypoplastic model --- submarine pipeline --- dense seabed foundation --- seismic dynamics --- resonance of submarine pipeline --- FSSI-CAS 2D


Book
Coastal Geohazard and Offshore Geotechnics
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering.

Keywords

Technology: general issues --- wave motion --- offshore deposits --- seabed response --- FEM --- pore pressure --- wave-current-seabed interaction --- RANS equations --- k-ε model --- current velocity --- seabed liquefaction --- liquefaction --- lateral displacement --- response surface method (RSM) --- artificial neural network (ANN) --- wave action --- silty sand --- seepage flow --- soil erosion --- pore-pressure accumulation --- three-phase soil model --- immersed tunnel --- trench --- numerical study --- porous seabed --- pumping well test --- groundwater fluctuation --- stratum deformation --- micro-confined aquifer --- wave–current–seabed interaction --- Reynolds-Averaged Navier-Stokesequations --- buried pipeline --- k-ε turbulence model --- oscillatory liquefaction --- wave-soil-pipeline interactions --- meshfree model --- local radial basis functions collocation method --- hydrate-bearing sediments --- damage statistical constitutive model --- multi-field coupling --- wellbore stability --- bridge scour --- identification --- ambient vibration --- field application --- natural frequency --- mode shape --- superstructure --- cable-stayed bridge --- Principal stress rotation --- dynamic loading --- wave (current)-induced soil response --- open-ended pile --- soil plug --- offshore wind turbines --- lateral cyclic loading --- model test --- discrete element simulation --- rock-socketed piles --- monopiles --- impedances --- dynamic responses --- buoyancy --- bottom-supported foundation --- field test --- numerical analysis --- giant submarine landslides --- shelf break --- South China Sea --- Himalayan orogeny --- repeated submarine landslides --- coastal-embankment slope --- stability --- unsaturated soil --- multilayered --- matric suction --- random searching algorithm --- rainfall infiltration --- scour --- soft clay --- monopile --- stress history --- hypoplastic model --- submarine pipeline --- dense seabed foundation --- seismic dynamics --- resonance of submarine pipeline --- FSSI-CAS 2D --- n/a


Book
Coastal Geohazard and Offshore Geotechnics
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering.

Keywords

wave motion --- offshore deposits --- seabed response --- FEM --- pore pressure --- wave-current-seabed interaction --- RANS equations --- k-ε model --- current velocity --- seabed liquefaction --- liquefaction --- lateral displacement --- response surface method (RSM) --- artificial neural network (ANN) --- wave action --- silty sand --- seepage flow --- soil erosion --- pore-pressure accumulation --- three-phase soil model --- immersed tunnel --- trench --- numerical study --- porous seabed --- pumping well test --- groundwater fluctuation --- stratum deformation --- micro-confined aquifer --- wave–current–seabed interaction --- Reynolds-Averaged Navier-Stokesequations --- buried pipeline --- k-ε turbulence model --- oscillatory liquefaction --- wave-soil-pipeline interactions --- meshfree model --- local radial basis functions collocation method --- hydrate-bearing sediments --- damage statistical constitutive model --- multi-field coupling --- wellbore stability --- bridge scour --- identification --- ambient vibration --- field application --- natural frequency --- mode shape --- superstructure --- cable-stayed bridge --- Principal stress rotation --- dynamic loading --- wave (current)-induced soil response --- open-ended pile --- soil plug --- offshore wind turbines --- lateral cyclic loading --- model test --- discrete element simulation --- rock-socketed piles --- monopiles --- impedances --- dynamic responses --- buoyancy --- bottom-supported foundation --- field test --- numerical analysis --- giant submarine landslides --- shelf break --- South China Sea --- Himalayan orogeny --- repeated submarine landslides --- coastal-embankment slope --- stability --- unsaturated soil --- multilayered --- matric suction --- random searching algorithm --- rainfall infiltration --- scour --- soft clay --- monopile --- stress history --- hypoplastic model --- submarine pipeline --- dense seabed foundation --- seismic dynamics --- resonance of submarine pipeline --- FSSI-CAS 2D --- n/a

Listing 1 - 9 of 9
Sort by