Narrow your search

Library

KU Leuven (3)

FARO (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (3)

2020 (3)

1988 (1)

Listing 1 - 7 of 7
Sort by

Book

Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.

Keywords

History of engineering & technology --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye


Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.


Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.


Book
Water Quality Engineering and Wastewater Treatment
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Clean water is one of the most important natural resources on earth. Wastewater, which is spent water, is also a valuable natural resource. However, wastewater may contain many contaminants and cannot be released back into the environment until the contaminants are removed. Untreated wastewater and inadequately treated wastewater may have a detrimental effect on the environment and has a harmful effect on human health. Water quality engineering addresses the sources, transport and treatment of chemical and microbiological contaminants that affect water. Objectives for the treatment of wastewater are that the treated wastewater can meet national effluent standards for the protection of the environment and the protection of public health. This book, which is based on the Special Issue, includes contributions on advanced technologies applied to the treatment of municipal and industrial wastewater and sludge. The book deals with recent advances in municipal wastewater, industrial wastewater, and sludge treatment technologies, health effects of municipal wastewater, risk management, energy efficient wastewater treatment, water sustainability, water reuse and resource recovery.

Keywords

Technology: general issues --- Dimocarpus longan seeds --- leachate treatment --- coagulant-flocculation --- polyaluminium chloride --- enteric virus --- remediation technology --- water quality --- chitosan --- diclofenac --- ibuprofen --- magnetic biochar --- naproxen --- aerobic-MOB-anoxic process --- biogas --- denitrification --- mixed methanotroph culture --- WWTP --- ionizing radiation --- agricultural effluents --- dye treatment --- pharmaceutical effluents --- disinfection --- ammonia --- zeolite --- electrocoagulation --- response surface methodology --- stabilized --- leachate --- adsorption capacity --- decentralized water supply --- electrochemical reaction --- inconsistent view --- sand filtration --- wastewater treatment --- zero-valent iron --- submergence --- eutrophication --- invasive-native competition --- growth rate --- morphological traits --- polluted urban river --- sequential constructed wetlands --- purification effect --- water restoration --- Yitong River --- air gap membrane distillation --- heavy metal removal --- industrial wastewater --- greywater treatment --- house onsite --- reuse --- irrigation --- acceptance --- barriers --- heavy metals determination --- groundwater --- greywater --- adsorption --- separation --- inductively coupled plasma mass spectroscopy --- natural and modified polymer --- biodegradability --- toxicant dyes --- industrial wastewater treatment --- kinetic studies --- Moringa oleifera --- plant seed biomass --- prediction modeling --- diclofenac (DIC) --- pH-dependent degradation mechanism --- reactive site --- tunnel-structured manganese oxide --- γ-MnO2 --- Lemna minor bioassay --- visual system --- computer vision --- water pollution assessment --- bioindicators --- synthetic nanoparticles --- nTiO2 and nCeO2 --- waste water treatment --- sp-ICP-MS nanoparticle tracking --- acid mine drainage --- sulphate reduction --- sulphate reducing bacteria --- Dimocarpus longan seeds --- leachate treatment --- coagulant-flocculation --- polyaluminium chloride --- enteric virus --- remediation technology --- water quality --- chitosan --- diclofenac --- ibuprofen --- magnetic biochar --- naproxen --- aerobic-MOB-anoxic process --- biogas --- denitrification --- mixed methanotroph culture --- WWTP --- ionizing radiation --- agricultural effluents --- dye treatment --- pharmaceutical effluents --- disinfection --- ammonia --- zeolite --- electrocoagulation --- response surface methodology --- stabilized --- leachate --- adsorption capacity --- decentralized water supply --- electrochemical reaction --- inconsistent view --- sand filtration --- wastewater treatment --- zero-valent iron --- submergence --- eutrophication --- invasive-native competition --- growth rate --- morphological traits --- polluted urban river --- sequential constructed wetlands --- purification effect --- water restoration --- Yitong River --- air gap membrane distillation --- heavy metal removal --- industrial wastewater --- greywater treatment --- house onsite --- reuse --- irrigation --- acceptance --- barriers --- heavy metals determination --- groundwater --- greywater --- adsorption --- separation --- inductively coupled plasma mass spectroscopy --- natural and modified polymer --- biodegradability --- toxicant dyes --- industrial wastewater treatment --- kinetic studies --- Moringa oleifera --- plant seed biomass --- prediction modeling --- diclofenac (DIC) --- pH-dependent degradation mechanism --- reactive site --- tunnel-structured manganese oxide --- γ-MnO2 --- Lemna minor bioassay --- visual system --- computer vision --- water pollution assessment --- bioindicators --- synthetic nanoparticles --- nTiO2 and nCeO2 --- waste water treatment --- sp-ICP-MS nanoparticle tracking --- acid mine drainage --- sulphate reduction --- sulphate reducing bacteria


Book
Water Quality Engineering and Wastewater Treatment
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Clean water is one of the most important natural resources on earth. Wastewater, which is spent water, is also a valuable natural resource. However, wastewater may contain many contaminants and cannot be released back into the environment until the contaminants are removed. Untreated wastewater and inadequately treated wastewater may have a detrimental effect on the environment and has a harmful effect on human health. Water quality engineering addresses the sources, transport and treatment of chemical and microbiological contaminants that affect water. Objectives for the treatment of wastewater are that the treated wastewater can meet national effluent standards for the protection of the environment and the protection of public health. This book, which is based on the Special Issue, includes contributions on advanced technologies applied to the treatment of municipal and industrial wastewater and sludge. The book deals with recent advances in municipal wastewater, industrial wastewater, and sludge treatment technologies, health effects of municipal wastewater, risk management, energy efficient wastewater treatment, water sustainability, water reuse and resource recovery.

Keywords

Technology: general issues --- Dimocarpus longan seeds --- leachate treatment --- coagulant–flocculation --- polyaluminium chloride --- enteric virus --- remediation technology --- water quality --- chitosan --- diclofenac --- ibuprofen --- magnetic biochar --- naproxen --- aerobic–MOB–anoxic process --- biogas --- denitrification --- mixed methanotroph culture --- WWTP --- ionizing radiation --- agricultural effluents --- dye treatment --- pharmaceutical effluents --- disinfection --- ammonia --- zeolite --- electrocoagulation --- response surface methodology --- stabilized --- leachate --- adsorption capacity --- decentralized water supply --- electrochemical reaction --- inconsistent view --- sand filtration --- wastewater treatment --- zero-valent iron --- submergence --- eutrophication --- invasive-native competition --- growth rate --- morphological traits --- polluted urban river --- sequential constructed wetlands --- purification effect --- water restoration --- Yitong River --- air gap membrane distillation --- heavy metal removal --- industrial wastewater --- greywater treatment --- house onsite --- reuse --- irrigation --- acceptance --- barriers --- heavy metals determination --- groundwater --- greywater --- adsorption --- separation --- inductively coupled plasma mass spectroscopy --- natural and modified polymer --- biodegradability --- toxicant dyes --- industrial wastewater treatment --- kinetic studies --- Moringa oleifera --- plant seed biomass --- prediction modeling --- diclofenac (DIC) --- pH-dependent degradation mechanism --- reactive site --- tunnel-structured manganese oxide --- γ-MnO2 --- Lemna minor bioassay --- visual system --- computer vision --- water pollution assessment --- bioindicators --- synthetic nanoparticles --- nTiO2 and nCeO2 --- waste water treatment --- sp-ICP-MS nanoparticle tracking --- acid mine drainage --- sulphate reduction --- sulphate reducing bacteria --- n/a --- coagulant-flocculation --- aerobic-MOB-anoxic process


Book
Water Quality Engineering and Wastewater Treatment
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Clean water is one of the most important natural resources on earth. Wastewater, which is spent water, is also a valuable natural resource. However, wastewater may contain many contaminants and cannot be released back into the environment until the contaminants are removed. Untreated wastewater and inadequately treated wastewater may have a detrimental effect on the environment and has a harmful effect on human health. Water quality engineering addresses the sources, transport and treatment of chemical and microbiological contaminants that affect water. Objectives for the treatment of wastewater are that the treated wastewater can meet national effluent standards for the protection of the environment and the protection of public health. This book, which is based on the Special Issue, includes contributions on advanced technologies applied to the treatment of municipal and industrial wastewater and sludge. The book deals with recent advances in municipal wastewater, industrial wastewater, and sludge treatment technologies, health effects of municipal wastewater, risk management, energy efficient wastewater treatment, water sustainability, water reuse and resource recovery.

Keywords

Dimocarpus longan seeds --- leachate treatment --- coagulant–flocculation --- polyaluminium chloride --- enteric virus --- remediation technology --- water quality --- chitosan --- diclofenac --- ibuprofen --- magnetic biochar --- naproxen --- aerobic–MOB–anoxic process --- biogas --- denitrification --- mixed methanotroph culture --- WWTP --- ionizing radiation --- agricultural effluents --- dye treatment --- pharmaceutical effluents --- disinfection --- ammonia --- zeolite --- electrocoagulation --- response surface methodology --- stabilized --- leachate --- adsorption capacity --- decentralized water supply --- electrochemical reaction --- inconsistent view --- sand filtration --- wastewater treatment --- zero-valent iron --- submergence --- eutrophication --- invasive-native competition --- growth rate --- morphological traits --- polluted urban river --- sequential constructed wetlands --- purification effect --- water restoration --- Yitong River --- air gap membrane distillation --- heavy metal removal --- industrial wastewater --- greywater treatment --- house onsite --- reuse --- irrigation --- acceptance --- barriers --- heavy metals determination --- groundwater --- greywater --- adsorption --- separation --- inductively coupled plasma mass spectroscopy --- natural and modified polymer --- biodegradability --- toxicant dyes --- industrial wastewater treatment --- kinetic studies --- Moringa oleifera --- plant seed biomass --- prediction modeling --- diclofenac (DIC) --- pH-dependent degradation mechanism --- reactive site --- tunnel-structured manganese oxide --- γ-MnO2 --- Lemna minor bioassay --- visual system --- computer vision --- water pollution assessment --- bioindicators --- synthetic nanoparticles --- nTiO2 and nCeO2 --- waste water treatment --- sp-ICP-MS nanoparticle tracking --- acid mine drainage --- sulphate reduction --- sulphate reducing bacteria --- n/a --- coagulant-flocculation --- aerobic-MOB-anoxic process

Listing 1 - 7 of 7
Sort by