Narrow your search
Listing 1 - 10 of 23 << page
of 3
>>
Sort by
Cell mechanics
Authors: ---
ISBN: 9780123705006 0123705002 Year: 2007 Publisher: Amsterdam : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cell mechanics is the field of study that looks at how cells detect, modify, and respond to the physical properties of the cell environment. Cells communicate with each other through chemical and physical signals which are involved in a range of process from embryogenesis and wound healing to pathological conditions such as cancerous invasion. Similar principles are also likely to be critical for success in regenerative medicine. Cell mechanics is thus central to understanding these principles. As cell mechanics draws from the fields of biology, chemistry, physics, engineering, and mathematics, this book aims not only to provide a collection of research methods, but also to develop a common language among scientists who share the interest in cell mechanics but enter the field with diverse backgrounds. To this end all of the contributing authors have sought to explain in plain language the nature of the biological problems, the rationale for the approaches, in addition to the methods themselves. In addition, to balance practical utility against conceptual advances, the book has intentionally included both chapters that provide detailed recipes and those that emphasize basic principles. * Presents a distinctive emphasis on matrix mechanics and their interplay with cell functions * Includes highly significant topics relevant to basic and translational research, as well as tissue engineering * Emphasizes mechanical input and output of cells


Book
Thy1/CD90 Surface Glycoprotein: Sensor of the Microenvironment?
Authors: ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Thy1/CD90 Surface Glycoprotein: Sensor of the Microenvironment?
Authors: ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Putting the "why" back into bone "archytecture"
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

A large literature exists on trabecular and cortical bone morphology. The engineering performance of bone, implied from its 3d architecture, is often the endpoint of bone biology experiments, being clinically relevant to bone fracture. How and why does bone travel along its complex spatio-temporal trajectory to acquire its architecture? The question "why" can have two meanings. The first, "teleological - why is an architecture advantageous?" – is the domain of substantial biomechanical research to date. The second, "etiological – how did an architecture come about?" – has received far less attention. This Frontiers Bone Research Topic invited contributions addressing this "etiological why" – what mechanisms can coordinate the activity of bone forming and resorbing cells to produce the observed complex and efficient bone architectures? One mechanism is proposed – chaotic nonlinear pattern formation (NPF) which underlies – in a unifying way – natural structures as disparate as trabecular bone, swarms of birds flying or shoaling fish, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements multiplied and repeated many times, lead to complex and structured patterns. This paradigm of growth and form leads to a profound link between bone regulation and its architecture: in bone "the architecture is the regulation". The former is the emergent consequence of the latter. Whatever mechanism does determine bone's developing architecture has to operate at the level of individual sites of formation and resorption and coupling between the two. This has implications as to how we understand the effect on bone of agents such as gene products or drugs. It may be for instance that the "tuning" of coupling between formation and resorption might be as important as the achievement of enhanced bone volume. The ten articles that were contributed to this Topic were just what we hoped for – a snapshot of leading edge bone biology research which addresses the question of how bone gets its shape. We hope that you find these papers thought-provoking, and that they might stimulate new ideas in the research into bone architecture, growth and adaptation, and how to preserve healthy bone from gestation and childhood until old age.


Book
Putting the "why" back into bone "archytecture"
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

A large literature exists on trabecular and cortical bone morphology. The engineering performance of bone, implied from its 3d architecture, is often the endpoint of bone biology experiments, being clinically relevant to bone fracture. How and why does bone travel along its complex spatio-temporal trajectory to acquire its architecture? The question "why" can have two meanings. The first, "teleological - why is an architecture advantageous?" – is the domain of substantial biomechanical research to date. The second, "etiological – how did an architecture come about?" – has received far less attention. This Frontiers Bone Research Topic invited contributions addressing this "etiological why" – what mechanisms can coordinate the activity of bone forming and resorbing cells to produce the observed complex and efficient bone architectures? One mechanism is proposed – chaotic nonlinear pattern formation (NPF) which underlies – in a unifying way – natural structures as disparate as trabecular bone, swarms of birds flying or shoaling fish, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements multiplied and repeated many times, lead to complex and structured patterns. This paradigm of growth and form leads to a profound link between bone regulation and its architecture: in bone "the architecture is the regulation". The former is the emergent consequence of the latter. Whatever mechanism does determine bone's developing architecture has to operate at the level of individual sites of formation and resorption and coupling between the two. This has implications as to how we understand the effect on bone of agents such as gene products or drugs. It may be for instance that the "tuning" of coupling between formation and resorption might be as important as the achievement of enhanced bone volume. The ten articles that were contributed to this Topic were just what we hoped for – a snapshot of leading edge bone biology research which addresses the question of how bone gets its shape. We hope that you find these papers thought-provoking, and that they might stimulate new ideas in the research into bone architecture, growth and adaptation, and how to preserve healthy bone from gestation and childhood until old age.


Book
Putting the "why" back into bone "archytecture"
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

A large literature exists on trabecular and cortical bone morphology. The engineering performance of bone, implied from its 3d architecture, is often the endpoint of bone biology experiments, being clinically relevant to bone fracture. How and why does bone travel along its complex spatio-temporal trajectory to acquire its architecture? The question "why" can have two meanings. The first, "teleological - why is an architecture advantageous?" – is the domain of substantial biomechanical research to date. The second, "etiological – how did an architecture come about?" – has received far less attention. This Frontiers Bone Research Topic invited contributions addressing this "etiological why" – what mechanisms can coordinate the activity of bone forming and resorbing cells to produce the observed complex and efficient bone architectures? One mechanism is proposed – chaotic nonlinear pattern formation (NPF) which underlies – in a unifying way – natural structures as disparate as trabecular bone, swarms of birds flying or shoaling fish, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements multiplied and repeated many times, lead to complex and structured patterns. This paradigm of growth and form leads to a profound link between bone regulation and its architecture: in bone "the architecture is the regulation". The former is the emergent consequence of the latter. Whatever mechanism does determine bone's developing architecture has to operate at the level of individual sites of formation and resorption and coupling between the two. This has implications as to how we understand the effect on bone of agents such as gene products or drugs. It may be for instance that the "tuning" of coupling between formation and resorption might be as important as the achievement of enhanced bone volume. The ten articles that were contributed to this Topic were just what we hoped for – a snapshot of leading edge bone biology research which addresses the question of how bone gets its shape. We hope that you find these papers thought-provoking, and that they might stimulate new ideas in the research into bone architecture, growth and adaptation, and how to preserve healthy bone from gestation and childhood until old age.


Book
Thy1/CD90 Surface Glycoprotein: Sensor of the Microenvironment?
Authors: ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Signal transduction
Authors: ---
ISBN: 9780123741943 0123741947 9786611795443 1281795445 0080568777 9780080568775 9780080919058 0080919057 9780123948199 0123948193 9780123694416 0123694418 9780123948038 0123948037 1282285416 1680150898 Year: 2016 Publisher: Amsterdam, [Netherlands] : Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Signal Transduction, 2e, is a thorough, well-illustrated study in cellular signaling processes. Beginning with the basics, this book shows how cells respond to external cues, hormones, growth factors, cytokines, cell surfaces, etc., and further instructs how these inputs are integrated. Instruction continues with up-to-date, inclusive coverage of intracellular calcium, nuclear receptors, tyrosine protein kinases and adaptive immunity, and targeting transduction pathways for research and medical intervention. Signal Transduction, 2e, serves as an invaluable resource

Keywords

Pharmaceutical chemistry --- Drugs --- Chimie pharmaceutique --- Médicaments --- Design --- Conception --- Pharmaceutical chemistry. --- Chimie pharmaceutique (Trad. du MeSH) --- Modèles chimiques (Trad. du MeSH) --- Chimie pharmaceutique. --- Pharmaceutical Preparations --- Design. --- Conception. --- chemistry. (MeSH - aucune traduction) --- Chemical models. --- Drugs. --- Pharmaceutical Preparations. --- Chemistry, Pharmaceutical --- Models, Chemical --- Chemistry --- Models, Theoretical --- Pharmacology --- Chemicals and Drugs --- Investigative Techniques --- Biological Science Disciplines --- Natural Science Disciplines --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Disciplines and Occupations --- Pharmacy, Therapeutics, & Pharmacology --- Health & Biological Sciences --- Médicaments --- Drug design --- Pharmaceutical design --- Drug development --- Chemistry, Medical and pharmaceutical --- Drug chemistry --- Medical chemistry --- Medicinal chemistry --- Pharmacochemistry --- Cellular signal transduction. --- Mechanotransduction, Cellular --- Cellular Mechanotransduction --- Mechanosensory Transduction --- Signal Transduction, Mechanical --- Mechanical Signal Transduction --- Transduction, Mechanosensory --- Podosomes --- Mechanoreceptors --- Cellular information transduction --- Information transduction, Cellular --- Signal transduction, Cellular --- Bioenergetics --- Cellular control mechanisms --- Information theory in biology --- Signal Transduction. --- Transduction du signal cellulaire --- Cellular signal transduction --- ELSEVIER-B EPUB-LIV-FT --- Cellular control mechanisms. --- Cell regulation --- Biological control systems --- Cell metabolism --- chemistry


Book
Cellular and Biomolecular Mechanics and Mechanobiology
Author:
ISBN: 3642142176 9786613083951 3642142184 1283083957 Year: 2011 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.


Book
Sensing with ion channels
Author:
ISBN: 9783540726838 3540726837 9786611118327 128111832X 3540727396 Year: 2008 Publisher: Berlin : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

Listing 1 - 10 of 23 << page
of 3
>>
Sort by