Narrow your search
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
A Concise History of Mathematics for Philosophers
Author:
ISBN: 1108610129 1108669719 1108693911 1108456235 9781108456234 9781108610124 Year: 2019 Publisher: Cambridge, England : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Element aims to present an outline of mathematics and its history, with particular emphasis on events that shook up its philosophy. It ranges from the discovery of irrational numbers in ancient Greece to the nineteenth- and twentieth-century discoveries on the nature of infinity and proof. Recurring themes are intuition and logic, meaning and existence, and the discrete and the continuous. These themes have evolved under the influence of new mathematical discoveries and the story of their evolution is, to a large extent, the story of philosophy of mathematics.

The Hilbert challenge
Author:
ISBN: 0198506511 9780198506515 Year: 2000 Publisher: Oxford: Oxford university press,

The philosophy of mathematics today
Author:
ISBN: 0198236549 9780198236542 Year: 1998 Publisher: Oxford Clarendon

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pythagoras revived : mathematics and philosophy in late antiquity
Author:
ISBN: 0198244851 0198239130 0191600938 1282051970 9786612051975 0191519804 9780191519802 9780191600937 9780198239130 9780198244851 6612051973 9781282051973 Year: 1989 Publisher: Oxford [England] : New York : Clarendon Press ; Oxford University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This title examines the Pythagorean idea that number is the key to understanding reality, describing first the Pythagorean interests of Platonists in the second and third centuries and then Iamblichus's programme to Pythagoreanize Platonism in the fourth century in his work 'On Pythagoreanism'.

De Zénon d'Elée à Poincaré : recueil d'études en hommage à Roshdi Rashed.
Authors: --- ---
ISBN: 9042914955 2877238075 9789042914957 Year: 2004 Volume: 1 Publisher: Louvain Peeters

The good life in the scientific revolution : Descartes, Pascal, Leibniz, and the cultivation of virtue
Author:
ISBN: 9780226409559 0226409546 0226409554 9780226409542 Year: 2006 Publisher: Chicago : University of Chicago Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amid the unrest, dislocation, and uncertainty of seventeenth-century Europe, readers seeking consolation and assurance turned to philosophical and scientific books that offered ways of conquering fears and training the mind& guidance for living a good life. 'The Good Life in the Scientific Revolution' presents a triptych showing how three key early modern scientists, Rene; Descartes, Blaise Pascal, and Gottfried Leibniz, envisioned their new work as useful for cultivating virtue and for pursuing a good life. Their scientific and philosophical innovations stemmed in part from their understanding of mathematics and science as cognitive and spiritual exercises that could create a truer mental and spiritual nobility. In portraying the rich contexts surrounding Descartes' geometry, Pascal's arithmetical triangle, and Leibniz's calculus, Matthew L. Jones argues that this drive for moral therapeutics guided important developments of early modern philosophy and the Scientific Revolution.


Book
Mathématiques et expérience : l'empirisme logique à l'épreuve (1918-1940)
Authors: ---
ISSN: 12659835 ISBN: 9782738122032 2738122035 Year: 2008 Publisher: Paris : O. Jacob,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Comment les mathématiques, pure création de l'esprit humain, peuvent-elles s'appliquer au monde réel qui nous entoure ? Comment les géométries non euclidiennes, nées de spéculations abstraites, peuvent-elles décrire l'atome ou l'Univers ? Comment la pure logique du calcul des probabilités peut-elle servir à établir les lois de la physique ou les statistiques des assurances ? Ce sont ces questions qu'affronte dans l'entre-deux guerres l'empirisme logique, ce grand courant du rationalisme européen qui suscite aujourd'hui un intérêt nouveau. Ses grandes figures, Carnap, Schlick. Reichenbach et quelques autres, ont été des penseurs très différents et profondément originaux. La philosophie des sciences contemporaine a encore de nombreuses leçons à tirer de leurs innovations conceptuelles et de leurs débats internes, mais aussi de la réflexion sur les limites de leur démarche et sur les obstacles qu'ils ont rencontrés.

Kant et les mathématiques : la conception Kantienne des mathématiques
Author:
ISBN: 2711616452 9782711616459 Year: 2003 Publisher: Paris Vrin

Loading...
Export citation

Choose an application

Bookmark

Abstract

La conception qu’Emmanuel Kant se faisait des mathématiques était en parfaite consonance avec l’opinion philosophique la plus courante au XVIIIe siècle à l’égard de cette science. Il conviendrait par conséquent de tenir davantage compte de l’histoire des idées scientifiques, ce qui permettrait de faire remarquer que la pensée kantienne relève d’un paradigme scientifique plus ancien, celui de la géométrie euclidienne (où l’image reste intimement articulée au signe), alors que les critiques ordinairement adressées au Kant mathématicien s’appuient indirectement sur l’héritage de la révolution algébrique par lequel le signe est désormais dissocié de l’image. Il convenait donc d’examiner dans le plus grand détail la manière dont, à travers son œuvre, Kant recevait et discutait les conceptions mathématiques de son temps, et en particulier la tension marquée entre la géométrie et l’arithmétique. Ce faisant, il redevient possible de recontextualiser le concept kantien d’intuition par rapport aux évidences de son temps, qui ne sont plus tout à fait les nôtres. Les réticences de Kant vis-à-vis des concepts les plus problématiques de l’algèbre se laissent ainsi interpréter à nouveaux frais, faisant ressortir la signification de l’architectonique.


Book

Book
Logicism, intuitionism, and formalism : what has become of them?
Author:
ISBN: 1402089252 9048180295 9786611913533 1281913537 1402089260 Year: 2009 Publisher: Dordrecht ; London : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in the famous Hilbert-Brouwer controversy in the 1920s. The purpose of this anthology is to review the programmes in the foundations of mathematics from the classical period and to assess their possible relevance for contemporary philosophy of mathematics. What can we say, in retrospect, about the various foundational programmes of the classical period and the disputes that took place between them? To what extent do the classical programmes of logicism, intuitionism and formalism represent options that are still alive today? These questions are addressed in this volume by leading mathematical logicians and philosophers of mathematics. The volume will be of interest primarily to researchers and graduate students of philosophy, logic, mathematics and theoretical computer science. The material will be accessible to specialists in these areas and to advanced graduate students in the respective fields.

Listing 1 - 10 of 11 << page
of 2
>>
Sort by