Narrow your search
Listing 1 - 8 of 8
Sort by

Article
Assessment of cage use by laboratory-bred common marmosets (Callithrix jacchus).
Authors: --- --- ---
Year: 2002

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Assessment. --- Cage. --- Marmoset.


Article
Ovariectomy does not abolish proceptive behaviour cyclicity in the common marmoset (Callithrix jacchus).
Authors: ---
Year: 1984

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
What can simple brains teach us about how vision works
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vision is the process of extracting behaviorally-relevant information from patterns of light that fall on retina as the eyes sample the outside world. Traditionally, nonhuman primates (macaque monkeys, in particular) have been viewed by many as the animal model-of-choice for investigating the neuronal substrates of visual processing, not only because their visual systems closely mirror our own, but also because it is often assumed that “simpler” brains lack advanced visual processing machinery. However, this narrow view of visual neuroscience ignores the fact that vision is widely distributed throughout the animal kingdom, enabling a wide repertoire of complex behaviors in species from insects to birds, fish, and mammals. Recent years have seen a resurgence of interest in alternative animal models for vision research, especially rodents. This resurgence is partly due to the availability of increasingly powerful experimental approaches (e.g., optogenetics and two-photon imaging) that are challenging to apply to their full potential in primates. Meanwhile, even more phylogenetically distant species such as birds, fish, and insects have long been workhorse animal models for gaining insight into the core computations underlying visual processing. In many cases, these animal models are valuable precisely because their visual systems are simpler than the primate visual system. Simpler systems are often easier to understand, and studying a diversity of neuronal systems that achieve similar functions can focus attention on those computational principles that are universal and essential. This Research Topic provides a survey of the state of the art in the use of animal models of visual functions that are alternative to macaques. It includes original research, methods articles, reviews, and opinions that exploit a variety of animal models (including rodents, birds, fishes and insects, as well as small New World monkey, the marmoset) to investigate visual function. The experimental approaches covered by these studies range from psychophysics and electrophysiology to histology and genetics, testifying to the richness and depth of visual neuroscience in non-macaque species.


Article
Is there a relationship between social isolation, cognitive inflexibility and behavioral stereotypy ? An analysis of the effects of amphetamine in the marmoset.
Authors: --- ---
Year: 1983

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
What can simple brains teach us about how vision works
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vision is the process of extracting behaviorally-relevant information from patterns of light that fall on retina as the eyes sample the outside world. Traditionally, nonhuman primates (macaque monkeys, in particular) have been viewed by many as the animal model-of-choice for investigating the neuronal substrates of visual processing, not only because their visual systems closely mirror our own, but also because it is often assumed that “simpler” brains lack advanced visual processing machinery. However, this narrow view of visual neuroscience ignores the fact that vision is widely distributed throughout the animal kingdom, enabling a wide repertoire of complex behaviors in species from insects to birds, fish, and mammals. Recent years have seen a resurgence of interest in alternative animal models for vision research, especially rodents. This resurgence is partly due to the availability of increasingly powerful experimental approaches (e.g., optogenetics and two-photon imaging) that are challenging to apply to their full potential in primates. Meanwhile, even more phylogenetically distant species such as birds, fish, and insects have long been workhorse animal models for gaining insight into the core computations underlying visual processing. In many cases, these animal models are valuable precisely because their visual systems are simpler than the primate visual system. Simpler systems are often easier to understand, and studying a diversity of neuronal systems that achieve similar functions can focus attention on those computational principles that are universal and essential. This Research Topic provides a survey of the state of the art in the use of animal models of visual functions that are alternative to macaques. It includes original research, methods articles, reviews, and opinions that exploit a variety of animal models (including rodents, birds, fishes and insects, as well as small New World monkey, the marmoset) to investigate visual function. The experimental approaches covered by these studies range from psychophysics and electrophysiology to histology and genetics, testifying to the richness and depth of visual neuroscience in non-macaque species.


Book
What can simple brains teach us about how vision works
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vision is the process of extracting behaviorally-relevant information from patterns of light that fall on retina as the eyes sample the outside world. Traditionally, nonhuman primates (macaque monkeys, in particular) have been viewed by many as the animal model-of-choice for investigating the neuronal substrates of visual processing, not only because their visual systems closely mirror our own, but also because it is often assumed that “simpler” brains lack advanced visual processing machinery. However, this narrow view of visual neuroscience ignores the fact that vision is widely distributed throughout the animal kingdom, enabling a wide repertoire of complex behaviors in species from insects to birds, fish, and mammals. Recent years have seen a resurgence of interest in alternative animal models for vision research, especially rodents. This resurgence is partly due to the availability of increasingly powerful experimental approaches (e.g., optogenetics and two-photon imaging) that are challenging to apply to their full potential in primates. Meanwhile, even more phylogenetically distant species such as birds, fish, and insects have long been workhorse animal models for gaining insight into the core computations underlying visual processing. In many cases, these animal models are valuable precisely because their visual systems are simpler than the primate visual system. Simpler systems are often easier to understand, and studying a diversity of neuronal systems that achieve similar functions can focus attention on those computational principles that are universal and essential. This Research Topic provides a survey of the state of the art in the use of animal models of visual functions that are alternative to macaques. It includes original research, methods articles, reviews, and opinions that exploit a variety of animal models (including rodents, birds, fishes and insects, as well as small New World monkey, the marmoset) to investigate visual function. The experimental approaches covered by these studies range from psychophysics and electrophysiology to histology and genetics, testifying to the richness and depth of visual neuroscience in non-macaque species.


Article
Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from "on-line" processing.
Authors: --- ---
Year: 1997

Loading...
Export citation

Choose an application

Bookmark

Abstract

Attentional set-shifting and discrimination reversal are sensitive to prefrontal damage in the marmoset in a manner qualitatively similar to that seen in man and Old World monkeys, respectively (Dias et al., 1996b), Preliminary findings have demonstrated that although lateral but not orbital prefrontal cortex is the critical locus in shifting an attentional set between perceptual dimensions, orbital but not lateral prefrontal cortex is the critical locus in reversing a stimulus-reward association within a particular perceptual dimension (Dias et al., 1996a). The present study presents this analysis in full and extends the results in three main ways by demonstrating that (1) mechanisms of inhibitory control and "on-line" processing are independent within the prefrontal cortex, (2) impairments in inhibitory control induced by prefrontal damage are restricted to novel situations, and (3) those prefrontal areas involved in the suppression of previously established response sets are not involved in the acquisition of such response sets. These findings suggest that inhibitory control is a general process that operates across functionally distinct regions within the prefrontal cortex. Although damage to lateral prefrontal cortex causes a loss of inhibitory control in attentional selection, damage to orbitofrontal cortex causes a loss of inhibitory control in affective processing. These findings provide an explanation for the apparent discrepancy between human and nonhuman primate studies in which disinhibition as measured on the Wisconsin Card Sort Test is associated with dorsolateral prefrontal damage, whereas disinhibition as measured on discrimination reversal is associated with orbitofrontal damage

Listing 1 - 8 of 8
Sort by