Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
Sialic acids. --- Acetylneuraminic acid --- Lactaminic acid --- Amino compounds --- Carboxylic acids --- Mannose
Choose an application
Apoptosis --- Mannose-Binding Lectin --- C-Reactive Protein --- Complement Pathway, Classical --- Complement System Proteins --- metabolism --- physiology --- immunology
Choose an application
Allium --- Allium sativum --- lectins --- genetic code --- proteins --- degradation. --- degradation --- plant secretions --- toxicity --- Apidae --- Mannose --- Nectar --- Biologie cellulaire --- Allium ursinum --- Alliinase
Choose an application
The importance of substitution by the sugar sialic acid and the role played by sialylated structures (eg. glycoproteins, glycolipids, glycoconjugates) in immune recognition, neural cell growth, embryogenesis and disease development including microbial pathogenesis and cancer progression, has become well-established. This ebook presents a summary of central aspects of sialobiology (i.e., the study of sialic acid and its relevance to biology).
Sialic acids. --- Biosynthesis. --- Biological synthesis --- Synthesis, Biological --- Biochemical engineering --- Biochemistry --- Organic compounds --- Synthetic biology --- Biochemical templates --- Acetylneuraminic acid --- Lactaminic acid --- Amino compounds --- Carboxylic acids --- Mannose --- Synthesis
Choose an application
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Chemistry. --- Bioorganic Chemistry. --- Cell Biology. --- Biochemistry, general. --- Bioorganic chemistry. --- Biochemistry. --- Cytology. --- Chimie --- Chimie bioorganique --- Biochimie --- Cytologie --- Chimie bio-organique --- Organic Chemistry --- Chemistry --- Physical Sciences & Mathematics --- Cell biology. --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Medical sciences --- Bio-organic chemistry --- Biological organic chemistry --- Biochemistry --- Chemistry, Organic --- Composition --- Biomedical materials. --- Sialic acids --- Physiological effect. --- Acetylneuraminic acid --- Lactaminic acid --- Amino compounds --- Carboxylic acids --- Mannose --- Biocompatible materials --- Biomaterials --- Medical materials --- Medicine --- Biomedical engineering --- Materials --- Biocompatibility --- Prosthesis --- Bioartificial materials --- Hemocompatible materials
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
Technology: general issues --- osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box–Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals --- n/a --- Box-Behnken design
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box–Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals --- n/a --- Box-Behnken design
Choose an application
This book focuses on the design of polymeric delivery systems for biomedical and nanomedicine applications as well as on understanding how such biomaterials interact in the physiological environment. The reader will find an encompassing view on the state-of-the-art of polymeric carriers, showing how current research deals with new stimuli-responsive systems for cancer therapies and biomedical challenges, namely overcoming the skin barrier. The published papers cover topics ranging from novel production methods and insights on hybrid polymers to applications as diverse as nanoparticles, hydrogels and microneedles for antifungal skin therapy, peptide and siRNA delivery, enhanced skin absorption of bioactive molecules, and anticancer therapy. The book comprises one review paper and nine research papers.
Technology: general issues --- osteoarthritis --- monosodium iodoacetate --- p47phox --- PLGA nanoparticles --- reactive oxygen species --- full factorial design --- optimization --- metronidazole --- nanocomposites --- sodium alginate --- chitosan --- PLGA --- hybrid polymers --- chitosan-PLGA polymer --- NMR --- DSC --- FT-IR --- covalent drug conjugation --- therapeutic nanodevice --- polymeric nanoparticles --- cancer therapy --- controlled drug delivery --- redox responsive PEG-block-PLA --- nanocarriers --- disulfide bond --- controlled release --- retinol --- nanosponge --- hydrogel --- Box-Behnken design --- pharmacokinetic --- terbinafine hydrogel --- niacinamide --- polyethene glycol (PEG) 400 --- solvent --- dermal delivery --- finite dose --- porcine skin --- dissolving microneedles --- multiple sclerosis --- PLP --- transdermal delivery --- tyrosol --- nanoparticles --- Design of Experiment (DoE) --- β cyclodextrin --- DNA binding --- glyconanoparticles --- immunotherapy --- infectious diseases --- mannose receptors --- nutraceuticals
Choose an application
This is the fourth Special Issue in Pharmaceuticals within the last six years dealing with aspects of radiopharmaceutical sciences. It demonstrates the significant interest and increasing relevance to ameliorate nuclear medicine imaging with PET or SPECT, and also radiotherapeutical procedures.Numerous targets and mechanisms have been identified and have been under investigation over the previous years, covering many fields of medical and clinical research. This development is well illustrated by the articles in the present issue, including 13 original research papers and one review, covering a broad range of actual research topics in the field of radiopharmaceutical sciences.
n/a --- pretargeting --- radioiodination --- neurodegeneration --- phosphoramidon --- GRPR --- molecular imaging --- allosteric modulator --- radiosynthesis --- separation --- ?-CIT. --- PET/CT imaging --- technetium-99m --- gastrin-releasing peptide receptor --- metabotropic glutamate receptor subtype 5 --- glutamate --- oncogenic fusions --- Fusarinine C --- hypoxia --- tirapazamine (TPZ) --- 68Ga --- sentinel lymph node --- 99mTc-radioligand --- iodine-131 --- electrophilic radioiodination --- 4-dioxide (BTDO) --- minigastrin --- ceftriaxone --- tropomyosin receptor kinase --- carbonic anhydrase IX --- ABP688 --- NPY(Y1)R --- MMPEP --- radiosensitizer --- neprilysin-inhibition --- radiochemistry --- girentuximab --- benzotriazine-1 --- gallium-68 --- cholecystokinin-2 receptor --- tumor targeting --- radioimmunotherapy --- salivary gland uptake --- metabolic stability --- tumor hypoxia --- multimerization --- oxidizing agent --- neuroinflammation --- gastrin-releasing peptide --- dextran --- carbon-11 --- peptide heterodimers --- apparent molar activity --- radiometals --- microglia --- rituximab --- [18F]FMISO --- [11C]meta-hydroxyephedrine --- Iodo-Gen® --- mannose --- 177Lu-radiopharmaceuticals --- azomycin nucleosides --- breast cancer --- click chemistry --- small animal imaging --- SR 4317 --- benzotriazine-1-monoxide (BTMO) --- bombesin --- prostate cancer --- Chloramine T --- 99mTc-radiopharmaceuticals --- ketamine --- PSMA-617 --- positron emission tomography --- hydrazinonicotinic acid (HYNIC) --- renal cell carcinomas --- [18F]PSS232 --- PET --- endoradiotherapy
Choose an application
Extracellular vesicles (EVs) are particles wrapped in a lipid bilayer membrane and are naturally released from cells. This kind of cargo vessel is a nanostructure that mainly transfers lipids, proteins, various nucleic acid fragments, and metabolic components to neighboring cells or distant parts of the body through the circulatory system. EVs are of great significance to the communication mechanism between cells. This book collects feature articles to enhance our understanding of the biological characteristics of EVs and their potential applications.
Medicine --- extracellular vesicle --- precision oncology --- cancer biomarker --- prostate cancer --- drug delivery --- extracellular vesicles --- lysosome --- nanocarriers --- ultrasound --- size exclusion chromatography --- differential ultracentrifugation --- head and neck squamous cell carcinoma (HNSCC) --- exosomes --- cancer --- biomarker --- diagnostic --- therapy --- liquid biopsy --- small extracellular vesicles (sEV) --- tumor-derived exosomes (TEX) --- melanoma cell-derived exosomes (MTEX) --- proteomics --- tumor microenvironment --- biomarkers --- ectosomes --- neoplasia --- microvesicles --- small extracellular vesicles --- isolation --- purification --- size-exclusion chromatography --- ultracentrifugation --- sucrose density cushion --- lymph node --- spleen --- solid tissue --- microvesicle --- exosome --- cancer therapeutic --- drug carrier --- flow cytometry --- immunophenotyping --- swarm detection --- tumor-associated macrophages --- macrophage polarization --- mannose receptor --- HIV-1 Nef --- glioblastoma --- microRNA --- immunoprecipitation --- CD44 --- human milk --- nutrient --- microbiota --- microRNAs --- nanocommunicator --- diagnostic biomarker --- drug delivery vehicle --- personalized cancer immunotherapy --- therapeutic agents --- cell-to-cell communication --- ionising radiation --- non-targeted effects --- signalling --- imaging flow cytometry --- biomarker reservoirs --- cancer diagnostics --- disease monitoring --- large EVs --- ovarian cancer cells --- ES-2 --- OAW-42 --- adipose tissue origin mesenchymal stem cells --- n/a
Listing 1 - 10 of 21 | << page >> |
Sort by
|