Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Fluid interfaces are promising candidates for confining different types of materials - e.g., polymers, surfactants, colloids, and even small molecules - and for designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the Physico-chemical bases underlying the formation of layers at fluid interfaces, as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamics features in the interfacial systems, which are far from those conventionally found in the traditional materials. This Special Issue is devoted to studies on fundamental and applied aspects of fluid interfaces, trying to provide a comprehensive perspective on the current status of the research field.
Technology: general issues --- thermal radiations --- magnetic field --- Carreau fluid --- stretching/shrinking surface --- Hall effect --- nonlinear radiations --- HAM --- desulfurization wastewater evaporation technology --- evaporation performance --- orthogonal test --- simulation --- spray coating --- coating film formation --- leveling of coating surface --- fluorescence method --- visualization --- ferromagnetic --- nanofluid --- bioconvection --- porous medium --- heat suction/injection --- magnetic dipole --- liquid-infused surfaces --- durability --- lubricants --- wetting --- liquid-repellent coatings --- annealed Co40Fe40W20 thin films --- magnetic tunnel junctions (MTJs) --- X-ray diffraction (XRD) --- contact angle --- surface energy --- nanomechanical properties --- Prandtl nanofluid flow --- convectively heated surface --- stochastic intelligent technique --- Levenberg Marquardt method --- backpropagated network --- artificial neural network --- Adam numerical solver --- surface hydrophilicity --- graphene --- ice formation --- clearance --- molecular dynamic simulation --- dynamics --- fluid interfaces --- inhalation --- lung surfactant --- nanoparticles --- pollutants --- rheology --- emulsion --- droplet size --- microscopy-assisted --- image analysis --- laser diffraction --- turbidity --- viscosity --- Ree-Eyring nanofluid --- viscous dissipation --- Cattaneo-Christov model --- Koo-Kleinstreuer model --- chemical reaction --- heat transfer --- stretching cylinder --- nonlinear radiation --- Powell–Eyring --- Darcy–Forchheimer --- n/a --- Powell-Eyring --- Darcy-Forchheimer
Choose an application
Fluid interfaces are promising candidates for confining different types of materials - e.g., polymers, surfactants, colloids, and even small molecules - and for designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the Physico-chemical bases underlying the formation of layers at fluid interfaces, as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamics features in the interfacial systems, which are far from those conventionally found in the traditional materials. This Special Issue is devoted to studies on fundamental and applied aspects of fluid interfaces, trying to provide a comprehensive perspective on the current status of the research field.
thermal radiations --- magnetic field --- Carreau fluid --- stretching/shrinking surface --- Hall effect --- nonlinear radiations --- HAM --- desulfurization wastewater evaporation technology --- evaporation performance --- orthogonal test --- simulation --- spray coating --- coating film formation --- leveling of coating surface --- fluorescence method --- visualization --- ferromagnetic --- nanofluid --- bioconvection --- porous medium --- heat suction/injection --- magnetic dipole --- liquid-infused surfaces --- durability --- lubricants --- wetting --- liquid-repellent coatings --- annealed Co40Fe40W20 thin films --- magnetic tunnel junctions (MTJs) --- X-ray diffraction (XRD) --- contact angle --- surface energy --- nanomechanical properties --- Prandtl nanofluid flow --- convectively heated surface --- stochastic intelligent technique --- Levenberg Marquardt method --- backpropagated network --- artificial neural network --- Adam numerical solver --- surface hydrophilicity --- graphene --- ice formation --- clearance --- molecular dynamic simulation --- dynamics --- fluid interfaces --- inhalation --- lung surfactant --- nanoparticles --- pollutants --- rheology --- emulsion --- droplet size --- microscopy-assisted --- image analysis --- laser diffraction --- turbidity --- viscosity --- Ree-Eyring nanofluid --- viscous dissipation --- Cattaneo-Christov model --- Koo-Kleinstreuer model --- chemical reaction --- heat transfer --- stretching cylinder --- nonlinear radiation --- Powell–Eyring --- Darcy–Forchheimer --- n/a --- Powell-Eyring --- Darcy-Forchheimer
Choose an application
Physics has the reputation of being difficult to understand and remote from everyday life. Robert Ehrlich, however, has spent much of his career disproving these stereotypes. In the long-awaited sequel to Turning the World Inside Out and 175 Other Simple Physics Demonstrations, he provides a new collection of physics demonstrations and experiments that prove that physics can, in fact, be "made simple." Intentionally using "low tech" and inexpensive materials from everyday life, Why Toast Lands Jelly-Side Down makes key principles of physics surprisingly easy to understand. After laying out the basic principles of what constitutes a successful demonstration, Ehrlich provides more than 100 examples. Some of the more intriguing include: Terminal Velocity of Falling Coffee Filters; Spinning a Penny; Dropping Two Rolls of Toilet Paper; Avalanches in a Sand Pile; When to Add the Cream to Your Coffee; Deep Knee Bends on a Bathroom Scale; Recoil Force on a Bent Straw; Swinging Your Arms While Walking; Estimating the Net Force on a Moving Book; and, of course, Why Toast Lands Jelly-Side Down. The book begins with a practical introduction on how to design physics demonstrations. The benefits of designing one's own "demos" are numerous, but primary among them is an increased understanding of basic physics. For many people who teach the principles of physics, demonstrations seem dauntingly complex, filled with hard-to-find equipment and too many possibilities for failure. The demonstrations described in this book are exactly the opposite. Ehrlich describes them with characteristic candor: "You can fit many of them in your pocket, bring them to your class without any set-up required, and best of all, you need not fear that your demo will more likely illustrate Murphy's laws rather than Newton's." For anyone with even the slightest interest in physics, Why Toast Lands Jelly-Side Down is filled with learning opportunities. For everyone who is studying physics or teaching the subject at any level, from amateur scientists to professional teachers, it is an essential resource.
Physics --- Experiments. --- Atwood's machine. --- Kipnis, Nahun. --- Newton's first law. --- World Wide Web. --- accelerometer. --- boulder in a boat. --- candle oscillator. --- capillary action. --- cavitation. --- chain reaction. --- depth of field. --- drag force. --- exchange processes. --- expansion of universe. --- floaters. --- general relativity. --- greenhouse effect. --- hourglass, weight of. --- inertial forces. --- inverse lawn sprinkler. --- inverted pendulum. --- invisibility. --- ladder against a wall. --- length contraction. --- magnetic dipole. --- magnetic marbles. --- missing circular arc. --- negative pinhole image. --- negative pressure. --- overhead projector uses. --- pinhole imaging. --- psychic powers. --- radiometer. --- relativity of simultaneity. --- rotating waves. --- sand piles. --- shock waves. --- siphon. --- soap bubbles. --- spinning a penny. --- spiral density wave. --- tachyons. --- tensile strength of water. --- terminal velocity. --- time dilation. --- tippy tops. --- total internal reflection. --- unstable equilibrium. --- water lens. --- weight of air. --- worldlines.
Choose an application
Fluid interfaces are promising candidates for confining different types of materials - e.g., polymers, surfactants, colloids, and even small molecules - and for designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the Physico-chemical bases underlying the formation of layers at fluid interfaces, as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamics features in the interfacial systems, which are far from those conventionally found in the traditional materials. This Special Issue is devoted to studies on fundamental and applied aspects of fluid interfaces, trying to provide a comprehensive perspective on the current status of the research field.
Technology: general issues --- thermal radiations --- magnetic field --- Carreau fluid --- stretching/shrinking surface --- Hall effect --- nonlinear radiations --- HAM --- desulfurization wastewater evaporation technology --- evaporation performance --- orthogonal test --- simulation --- spray coating --- coating film formation --- leveling of coating surface --- fluorescence method --- visualization --- ferromagnetic --- nanofluid --- bioconvection --- porous medium --- heat suction/injection --- magnetic dipole --- liquid-infused surfaces --- durability --- lubricants --- wetting --- liquid-repellent coatings --- annealed Co40Fe40W20 thin films --- magnetic tunnel junctions (MTJs) --- X-ray diffraction (XRD) --- contact angle --- surface energy --- nanomechanical properties --- Prandtl nanofluid flow --- convectively heated surface --- stochastic intelligent technique --- Levenberg Marquardt method --- backpropagated network --- artificial neural network --- Adam numerical solver --- surface hydrophilicity --- graphene --- ice formation --- clearance --- molecular dynamic simulation --- dynamics --- fluid interfaces --- inhalation --- lung surfactant --- nanoparticles --- pollutants --- rheology --- emulsion --- droplet size --- microscopy-assisted --- image analysis --- laser diffraction --- turbidity --- viscosity --- Ree-Eyring nanofluid --- viscous dissipation --- Cattaneo-Christov model --- Koo-Kleinstreuer model --- chemical reaction --- heat transfer --- stretching cylinder --- nonlinear radiation --- Powell-Eyring --- Darcy-Forchheimer --- thermal radiations --- magnetic field --- Carreau fluid --- stretching/shrinking surface --- Hall effect --- nonlinear radiations --- HAM --- desulfurization wastewater evaporation technology --- evaporation performance --- orthogonal test --- simulation --- spray coating --- coating film formation --- leveling of coating surface --- fluorescence method --- visualization --- ferromagnetic --- nanofluid --- bioconvection --- porous medium --- heat suction/injection --- magnetic dipole --- liquid-infused surfaces --- durability --- lubricants --- wetting --- liquid-repellent coatings --- annealed Co40Fe40W20 thin films --- magnetic tunnel junctions (MTJs) --- X-ray diffraction (XRD) --- contact angle --- surface energy --- nanomechanical properties --- Prandtl nanofluid flow --- convectively heated surface --- stochastic intelligent technique --- Levenberg Marquardt method --- backpropagated network --- artificial neural network --- Adam numerical solver --- surface hydrophilicity --- graphene --- ice formation --- clearance --- molecular dynamic simulation --- dynamics --- fluid interfaces --- inhalation --- lung surfactant --- nanoparticles --- pollutants --- rheology --- emulsion --- droplet size --- microscopy-assisted --- image analysis --- laser diffraction --- turbidity --- viscosity --- Ree-Eyring nanofluid --- viscous dissipation --- Cattaneo-Christov model --- Koo-Kleinstreuer model --- chemical reaction --- heat transfer --- stretching cylinder --- nonlinear radiation --- Powell-Eyring --- Darcy-Forchheimer
Choose an application
The essential introduction to magnetic reconnection—written by a leading pioneer of the fieldPlasmas comprise more than 99 percent of the visible universe; and, wherever plasmas are, magnetic reconnection occurs. In this common and yet incompletely understood physical process, oppositely directed magnetic fields in a plasma meet, break, and then reconnect, converting the huge amounts of energy stored in magnetic fields into kinetic and thermal energy. In Magnetic Reconnection, Masaaki Yamada offers an illuminating synthesis of modern research and advances on this important topic. Magnetic reconnection produces such phenomena as solar flares and the northern lights, and occurs in nuclear fusion devices. A better understanding of this crucial cosmic activity is essential to comprehending the universe and varied technological applications, such as satellite communications. Most of our knowledge of magnetic reconnection comes from theoretical and computational models and laboratory experiments, but space missions launched in recent years have added up-close observation and measurements to researchers’ tools. Describing the fundamental physics of magnetic reconnection, Yamada connects the theory with the latest results from laboratory experiments and space-based observations, including the Magnetic Reconnection Experiment (MRX) and the Magnetospheric Multiscale (MMS) Mission. He concludes by considering outstanding problems and laying out a road map for future research.Aimed at advanced graduate students and researchers in plasma astrophysics, solar physics, and space physics, Magnetic Reconnection provides cutting-edge information vital area of scientific investigation.
Magnetic reconnection. --- SCIENCE / Physics / Magnetism. --- Acceleration. --- Accretion disk. --- Ampere. --- Annihilation. --- Astrophysical plasma. --- Astrophysics. --- Bremsstrahlung. --- Collision frequency. --- Collisionality. --- Coronal loop. --- Coronal mass ejection. --- Coulomb collision. --- Current density. --- Current sheet. --- Cyclotron. --- Debye length. --- Diffusion layer. --- Dissipation. --- Drift velocity. --- Dynamo theory. --- Electric field. --- Electrical resistivity and conductivity. --- Electron temperature. --- Electrostatics. --- Energy transformation. --- Experimental physics. --- Fermi acceleration. --- Feynman diagram. --- Field effect (semiconductor). --- Field line. --- Fine structure. --- Flux tube. --- Fusion power. --- Gauge theory. --- Gyroradius. --- Hall effect. --- Inductance. --- Induction equation. --- Instability. --- Interferometry. --- Ion acoustic wave. --- Ionization. --- Kinetic theory of gases. --- Kink instability. --- Landau damping. --- Langmuir probe. --- Length scale. --- Lorentz force. --- Madison Symmetric Torus. --- Magnetar. --- Magnetic confinement fusion. --- Magnetic diffusivity. --- Magnetic dipole. --- Magnetic energy. --- Magnetic field. --- Magnetic flux. --- Magnetic helicity. --- Magnetization. --- Magnetohydrodynamics. --- Magnetopause. --- Magnetosheath. --- Magnetosonic wave. --- Magnetosphere. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Momentum transfer. --- Neutral beam injection. --- Nonlinear optics. --- Nuclear fusion. --- Paramagnetism. --- Particle physics. --- Pitch angle (particle motion). --- Plasma (physics). --- Plasma acceleration. --- Plasma oscillation. --- Plasma parameter. --- Plasma parameters. --- Plasma stability. --- Plasmoid. --- Quadrupole. --- Relativistic plasma. --- Reversed field pinch. --- Safety factor (plasma physics). --- Scattering. --- Skin effect. --- Solar flare. --- Spacecraft. --- Spatial scale. --- Spheromak. --- Stark effect. --- Substorm. --- Synchrotron radiation. --- Thermodynamic equilibrium. --- Thomson scattering. --- Tokamak. --- Two-dimensional space. --- Van Allen radiation belt. --- Weibel instability. --- X-ray. --- Annihilation, Magnetic field --- Magnetic field annihilation --- Magnetic field line merging --- Merging, Magnetic field line --- Reconnection, Magnetic --- Reconnection (Astronomy) --- Astrophysics --- Geophysics --- Magnetic fields
Listing 1 - 5 of 5 |
Sort by
|