Listing 1 - 10 of 10 |
Sort by
|
Choose an application
The need for constant improvement to reach a high standard of safety and to make nanomaterials accessible for marketing has generated a considerable number of scientific papers that highlight new important aspects to be considered, such as synthesis, stability, biocompatibility, and easy manipulation. In order to provide a comprehensive update on the latest discoveries concerning nanomaterials, this reprint presents 14 scientific papers, 10 research articles and 4 reviews, that deal with biomedical and biotechnological applications of nanomaterials.
Technology: general issues --- Biotechnology --- neurodegenerative disease --- cerium oxide nanoparticles --- Parkinson’s disease --- oxidative stress --- physicochemical properties --- blood-brain barrier --- synthesis methods --- magnetic driving --- magnetic nanoparticles --- actuation system --- drug targeting --- chitosan --- clay --- nanocomposite films --- papain --- covalent immobilization --- wine --- magnetic gels --- drug release --- magnetic hyperthermia --- magnetic lipogels --- supramolecular hydrogels --- self-assembly --- nanoparticle functionalization --- organic and inorganic nanoparticles --- ophthalmic applications --- clinical trials --- orthopedic --- nanomedicine --- nanomodified surfaces --- animal model --- immune response --- Chlorella vulgaris --- microwave-synthesized magnetite particles --- response surface methodology --- harvesting process optimization --- optimization --- economic analysis --- plant design and process engineering --- cubic particles --- COVID-19 --- nanotechnology --- vaccines --- sanitizers --- biosensors --- restricted access media --- nanofibers --- microfibers --- on-line extraction --- biological samples --- column-switching chromatography --- theranostic nanomaterials --- boron nitride --- neutron capture reaction --- nuclear medicine --- drug delivery --- antibiotics --- antimicrobial resistance --- gold nanoparticles --- ciprofloxacin --- Enterococcus faecalis --- liver and kidney infections --- colorectal cancer --- biomarkers --- cytotoxic medication --- genetic pathways --- epigenetic changes --- prognostic --- phytomedicine --- rheumatoid arthritis --- methotrexate --- anti-arthritic activity --- nanoemulsion --- hemocompatibility --- MTT assay --- stability studies --- n/a --- Parkinson's disease
Choose an application
The need for constant improvement to reach a high standard of safety and to make nanomaterials accessible for marketing has generated a considerable number of scientific papers that highlight new important aspects to be considered, such as synthesis, stability, biocompatibility, and easy manipulation. In order to provide a comprehensive update on the latest discoveries concerning nanomaterials, this reprint presents 14 scientific papers, 10 research articles and 4 reviews, that deal with biomedical and biotechnological applications of nanomaterials.
neurodegenerative disease --- cerium oxide nanoparticles --- Parkinson’s disease --- oxidative stress --- physicochemical properties --- blood-brain barrier --- synthesis methods --- magnetic driving --- magnetic nanoparticles --- actuation system --- drug targeting --- chitosan --- clay --- nanocomposite films --- papain --- covalent immobilization --- wine --- magnetic gels --- drug release --- magnetic hyperthermia --- magnetic lipogels --- supramolecular hydrogels --- self-assembly --- nanoparticle functionalization --- organic and inorganic nanoparticles --- ophthalmic applications --- clinical trials --- orthopedic --- nanomedicine --- nanomodified surfaces --- animal model --- immune response --- Chlorella vulgaris --- microwave-synthesized magnetite particles --- response surface methodology --- harvesting process optimization --- optimization --- economic analysis --- plant design and process engineering --- cubic particles --- COVID-19 --- nanotechnology --- vaccines --- sanitizers --- biosensors --- restricted access media --- nanofibers --- microfibers --- on-line extraction --- biological samples --- column-switching chromatography --- theranostic nanomaterials --- boron nitride --- neutron capture reaction --- nuclear medicine --- drug delivery --- antibiotics --- antimicrobial resistance --- gold nanoparticles --- ciprofloxacin --- Enterococcus faecalis --- liver and kidney infections --- colorectal cancer --- biomarkers --- cytotoxic medication --- genetic pathways --- epigenetic changes --- prognostic --- phytomedicine --- rheumatoid arthritis --- methotrexate --- anti-arthritic activity --- nanoemulsion --- hemocompatibility --- MTT assay --- stability studies --- n/a --- Parkinson's disease
Choose an application
The need for constant improvement to reach a high standard of safety and to make nanomaterials accessible for marketing has generated a considerable number of scientific papers that highlight new important aspects to be considered, such as synthesis, stability, biocompatibility, and easy manipulation. In order to provide a comprehensive update on the latest discoveries concerning nanomaterials, this reprint presents 14 scientific papers, 10 research articles and 4 reviews, that deal with biomedical and biotechnological applications of nanomaterials.
Technology: general issues --- Biotechnology --- neurodegenerative disease --- cerium oxide nanoparticles --- Parkinson's disease --- oxidative stress --- physicochemical properties --- blood-brain barrier --- synthesis methods --- magnetic driving --- magnetic nanoparticles --- actuation system --- drug targeting --- chitosan --- clay --- nanocomposite films --- papain --- covalent immobilization --- wine --- magnetic gels --- drug release --- magnetic hyperthermia --- magnetic lipogels --- supramolecular hydrogels --- self-assembly --- nanoparticle functionalization --- organic and inorganic nanoparticles --- ophthalmic applications --- clinical trials --- orthopedic --- nanomedicine --- nanomodified surfaces --- animal model --- immune response --- Chlorella vulgaris --- microwave-synthesized magnetite particles --- response surface methodology --- harvesting process optimization --- optimization --- economic analysis --- plant design and process engineering --- cubic particles --- COVID-19 --- nanotechnology --- vaccines --- sanitizers --- biosensors --- restricted access media --- nanofibers --- microfibers --- on-line extraction --- biological samples --- column-switching chromatography --- theranostic nanomaterials --- boron nitride --- neutron capture reaction --- nuclear medicine --- drug delivery --- antibiotics --- antimicrobial resistance --- gold nanoparticles --- ciprofloxacin --- Enterococcus faecalis --- liver and kidney infections --- colorectal cancer --- biomarkers --- cytotoxic medication --- genetic pathways --- epigenetic changes --- prognostic --- phytomedicine --- rheumatoid arthritis --- methotrexate --- anti-arthritic activity --- nanoemulsion --- hemocompatibility --- MTT assay --- stability studies --- neurodegenerative disease --- cerium oxide nanoparticles --- Parkinson's disease --- oxidative stress --- physicochemical properties --- blood-brain barrier --- synthesis methods --- magnetic driving --- magnetic nanoparticles --- actuation system --- drug targeting --- chitosan --- clay --- nanocomposite films --- papain --- covalent immobilization --- wine --- magnetic gels --- drug release --- magnetic hyperthermia --- magnetic lipogels --- supramolecular hydrogels --- self-assembly --- nanoparticle functionalization --- organic and inorganic nanoparticles --- ophthalmic applications --- clinical trials --- orthopedic --- nanomedicine --- nanomodified surfaces --- animal model --- immune response --- Chlorella vulgaris --- microwave-synthesized magnetite particles --- response surface methodology --- harvesting process optimization --- optimization --- economic analysis --- plant design and process engineering --- cubic particles --- COVID-19 --- nanotechnology --- vaccines --- sanitizers --- biosensors --- restricted access media --- nanofibers --- microfibers --- on-line extraction --- biological samples --- column-switching chromatography --- theranostic nanomaterials --- boron nitride --- neutron capture reaction --- nuclear medicine --- drug delivery --- antibiotics --- antimicrobial resistance --- gold nanoparticles --- ciprofloxacin --- Enterococcus faecalis --- liver and kidney infections --- colorectal cancer --- biomarkers --- cytotoxic medication --- genetic pathways --- epigenetic changes --- prognostic --- phytomedicine --- rheumatoid arthritis --- methotrexate --- anti-arthritic activity --- nanoemulsion --- hemocompatibility --- MTT assay --- stability studies
Choose an application
For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathways for building sophisticated structural architectures for different purposes. The Darwinian exploration was performed by trial and error, but the success in terms of complexity and efficiency is evident. Understanding the strategies that those organisms employ for regulating the nucleation, growth, and assembly of nanocrystals to build these sophisticated devices is an intellectual challenge and a source of inspiration in fields as diverse as materials science, nanotechnology, and biomedicine. However, “Biological Crystallization” is a broader topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates, or lipids, and the synthesis and fabrication of biomimetic materials by different routes. This Special Issue collects 15 contributions ranging from biological and biomimetic crystallization of calcium carbonate, calcium phosphate, and silica-carbonate self-assembled materials to the crystallization of biological macromolecules. Special attention has been paid to the fundamental phenomena of crystallization (nucleation and growth), and the applications of the crystals in biomedicine, environment, and materials science.
chitosan --- Csep1p --- bond selection during protein crystallization --- bioremediation --- education --- reductants --- heavy metals --- biomimetic crystallization --- MTT assay --- protein crystallization --- drug discovery --- optimization --- polymyxin resistance --- lysozyme --- ependymin-related protein (EPDR) --- equilibration between crystal bond and destructive energies --- barium carbonate --- dyes --- microseed matrix screening --- nanoapatites --- colistin resistance --- Haloalkane dehalogenase --- diffusion --- polyacrylic acid --- random microseeding --- protein ‘affinity’ to water --- insulin --- protein crystal nucleation --- agarose --- lithium ions --- ependymin (EPN) --- {00.1} calcite --- seeding --- Campylobacter consisus --- metallothioneins --- Crohn’s disease --- balance between crystal bond energy and destructive surface energies --- color change --- microbially induced calcite precipitation (MICP) --- crystallization of macromolecules --- crystallization --- calcein --- MCR-1 --- Cry protein crystals --- L-tryptophan --- circular dichroism --- crystal violet --- nanocomposites --- halide-binding site --- calcium carbonate --- PCDA --- ultrasonic irradiation --- adsorption --- biochemical aspects of the protein crystal nucleation --- GTL-16 cells --- proteinase k --- neutron protein crystallography --- classical and two-step crystal nucleation mechanisms --- thermodynamic and energetic approach --- heavy metal contamination --- N-acetyl-D-glucosamine --- crystallization in solution flow --- solubility --- biomorphs --- droplet array --- biomimetic materials --- ferritin --- biomineralization --- wastewater treatment --- H3O+ --- silica --- graphene --- supersaturation dependence of the crystal nucleus size --- pyrrole --- micro-crystals --- nucleation --- crystallography --- mammalian ependymin-related protein (MERP) --- high-throughput --- vaterite transformation --- gradients --- materials science --- bioprecipitation --- biomedicine --- human carbonic anhydrase IX --- protein crystal nucleation in pores --- growth --- crystal growth
Choose an application
The aim of this Special Issue is to collect reports regarding all the recent strategies, directed at the improvement of antineoplastic activity of drugs in cancer progression, engaging all the expertise needed for the development of new anticancer drugs: medicinal chemistry, pharmacology, molecular biology, and computational and drug delivery studies.
Research & information: general --- Biology, life sciences --- EGR-1 --- flavonoid --- (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile --- MDA-MB-231 --- MMP9 --- TNFα --- pancreatic ductal adenocarcinoma --- cyclodextrin inclusion complex --- phase solubility studies --- preformulation studies --- biphenylnicotinamide derivatives --- dual inhibitor --- EGFR --- VEGFR2 --- ligand-based pharmacophore --- molecular docking --- molecular dynamics --- leukemias --- doxorubicin --- inflammation --- drug delivery --- tumor targeting --- elastin-like polypeptide --- cell penetrating peptide --- matrix metalloproteinase --- doxorubicin resistance --- photosensitizer delivery system --- PAMAM dendrimer --- photodynamic therapy --- cytotoxicity --- phototoxicity --- colorectal adenocarcinoma --- dicarboximides --- chemical synthesis --- apoptosis --- kinases --- anticancer --- gene profiling --- SAR --- biomarkers --- colorectal cancer --- early detection examination --- liquid biopsy --- personalized medicine --- tumor treatment --- exosomes --- ctDNA --- CTC --- cytotoxic activity --- pyrazole derivatives --- MTT assay --- ADMET analysis --- single-crystal diffraction --- FTIR spectroscopy --- NMR spectroscopy thermogravimetric analysis --- acute myelogenous leukemia --- platelets --- microparticles --- γδ T cells --- immunotherapy --- tumor resistance --- combination therapy --- tumor microenvironment --- immune checkpoint inhibitor --- neuroblastoma --- molecular iodine --- cyclophosphamide --- xenografts --- metronomic therapy --- tamoxifen --- CYP2D6 --- MCF-7 --- Ishikawa cells --- SERM --- TNBC --- uterotrophic --- α-mangostin --- poly(amidoamine) dendrimer --- targeted drug delivery --- biotin targeting --- glioblastoma multiforme --- squamous cell carcinoma --- antiparasitic therapy --- diclofenac --- indomethacin --- oleanolic acid derivative conjugates --- NF-κB --- Nrf2 --- MAPKs --- PSN-1 cells --- reactive oxygen species --- glioblastoma --- brain tumor --- extracellular vesicles --- pancreatic cancer --- paclitaxel --- clathrin --- endocytosis --- sulforaphane --- nicotine --- metalloproteinase-9 --- gastric cancer --- cell invasion --- Arylquin 1 --- colon cancer --- tumor progression --- azelastine --- oxidative stress --- autophagy --- mitotic catastrophe --- chronic myeloid leukemia --- imatinib --- tyrosine kinase --- ketoconazole --- P-glycoprotein --- drug efflux transporter --- non-small-cell lung cancer --- cisplatin resistance --- aldehyde dehydrogenase --- isothiocyanates --- disulfiram --- epithelial to mesenchymal transition --- aminopeptidase N --- acetamidophenones --- Schiff bases --- semicarbazones --- thiosemicarbazones --- inhibition of proliferation
Choose an application
Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
PhGs --- bitter orange --- immunomodulator --- A549 cells --- bergapten --- triptolide --- BMP/Smad --- phytochemicals --- antioxidant enzymes --- kumquat --- MTT assay --- HepaRG cells --- human health --- nanoparticles --- dendritic cells --- drug discovery --- biofilm --- catechin --- antitubercular activity --- Panax notoginseng saponins --- animals --- mouse-hair growth --- A? --- curcumin --- WNT/?-catenin --- copaiba --- AD --- Plasmodium parasites --- traditional medicine --- procyanidin A2 --- PET inhibition --- rheumatoid arthritis --- cannabinoid type 1 receptor --- iridoids --- inflammatory bowel disease --- acute liver injury --- human-hair-follicle dermal papilla cells --- Neuroprotective --- dihydromyricetin --- AMPK --- thromboembolism --- ginseng --- drug design and development --- endoplasmic reticulum stress --- mitogen-activated protein kinase --- Nrf2 --- prenylated flavonoids --- inflammation --- preclinical studies --- plants --- dietary supplements --- Glycyrrhiza uralensis --- aspirin --- Tripterygium wilfordii --- P. eryngii --- reperfusion --- ethnopharmacology --- glucans --- innovation --- hpatoprotection --- hinokitiol --- phytocannabinoid --- antistaphylococcal activity --- Shh/Gli --- green tea --- sesquiterpenoids --- adjuvant-induced arthritis --- yuzu --- hepatotoxicity --- p53/Bax --- Keap1 --- nuclear factor-kappaB --- oxidative stress --- pharmacokinetic study --- cinnamamides --- toxicity --- APAP --- Astragali Radix --- computational softwares --- plant natural product --- onion --- anti-malaria activity --- lipogenesis --- bleeding time --- diterpenoids --- Penthorum chinense Pursh --- myocardial hypertrophy --- automation --- adjuvant --- grapefruit --- melanoma cell --- essential oil --- sweet orange --- Amadori rearrangement compounds --- heme oxygenase --- global health --- calorie restriction --- bergamot --- liposomes --- EGCG --- celastrol --- herb–drug interactions --- cannabigerol --- anti-inflammation --- OH· free radical --- molecular targets --- gluconeogenesis --- microbiome --- SIRT1 --- fucoidan --- heart --- PC12 cells --- acetaminophen --- omics --- time-kill assay --- arthritis --- lychee seed --- bioinformatics --- structure–activity relationship --- precision medicine --- orange petitgrain --- immune modulation --- antiproliferation --- flavonoids --- scoulerine --- oleoresin --- triterpenic acids --- Cannabis sativa --- NAFLD --- biological activity --- differentiation --- oxygen consumption rate --- mitochondrial bioenergetics --- neroli --- apoptosis --- targeted delivery --- platelet activation --- protein kinase --- heat-process --- hepatic steatosis --- hyperglycemia --- natural products --- lemon --- genistein --- neuroinflammation --- astragaloside IV --- cytoxicity --- flavonoid --- paracetamol --- medicinal plants --- insulin resistance --- resveratrol --- mandarin --- garlic --- TGF-? --- morin hydrate --- sirtuin 3 --- MMPs --- gomisin N --- lime --- Ziziphus jujuba --- antifungal activity --- ischemia --- migration --- caspases --- small molecules --- PhGs --- bitter orange --- immunomodulator --- A549 cells --- bergapten --- triptolide --- BMP/Smad --- phytochemicals --- antioxidant enzymes --- kumquat --- MTT assay --- HepaRG cells --- human health --- nanoparticles --- dendritic cells --- drug discovery --- biofilm --- catechin --- antitubercular activity --- Panax notoginseng saponins --- animals --- mouse-hair growth --- A? --- curcumin --- WNT/?-catenin --- copaiba --- AD --- Plasmodium parasites --- traditional medicine --- procyanidin A2 --- PET inhibition --- rheumatoid arthritis --- cannabinoid type 1 receptor --- iridoids --- inflammatory bowel disease --- acute liver injury --- human-hair-follicle dermal papilla cells --- Neuroprotective --- dihydromyricetin --- AMPK --- thromboembolism --- ginseng --- drug design and development --- endoplasmic reticulum stress --- mitogen-activated protein kinase --- Nrf2 --- prenylated flavonoids --- inflammation --- preclinical studies --- plants --- dietary supplements --- Glycyrrhiza uralensis --- aspirin --- Tripterygium wilfordii --- P. eryngii --- reperfusion --- ethnopharmacology --- glucans --- innovation --- hpatoprotection --- hinokitiol --- phytocannabinoid --- antistaphylococcal activity --- Shh/Gli --- green tea --- sesquiterpenoids --- adjuvant-induced arthritis --- yuzu --- hepatotoxicity --- p53/Bax --- Keap1 --- nuclear factor-kappaB --- oxidative stress --- pharmacokinetic study --- cinnamamides --- toxicity --- APAP --- Astragali Radix --- computational softwares --- plant natural product --- onion --- anti-malaria activity --- lipogenesis --- bleeding time --- diterpenoids --- Penthorum chinense Pursh --- myocardial hypertrophy --- automation --- adjuvant --- grapefruit --- melanoma cell --- essential oil --- sweet orange --- Amadori rearrangement compounds --- heme oxygenase --- global health --- calorie restriction --- bergamot --- liposomes --- EGCG --- celastrol --- herb–drug interactions --- cannabigerol --- anti-inflammation --- OH· free radical --- molecular targets --- gluconeogenesis --- microbiome --- SIRT1 --- fucoidan --- heart --- PC12 cells --- acetaminophen --- omics --- time-kill assay --- arthritis --- lychee seed --- bioinformatics --- structure–activity relationship --- precision medicine --- orange petitgrain --- immune modulation --- antiproliferation --- flavonoids --- scoulerine --- oleoresin --- triterpenic acids --- Cannabis sativa --- NAFLD --- biological activity --- differentiation --- oxygen consumption rate --- mitochondrial bioenergetics --- neroli --- apoptosis --- targeted delivery --- platelet activation --- protein kinase --- heat-process --- hepatic steatosis --- hyperglycemia --- natural products --- lemon --- genistein --- neuroinflammation --- astragaloside IV --- cytoxicity --- flavonoid --- paracetamol --- medicinal plants --- insulin resistance --- resveratrol --- mandarin --- garlic --- TGF-? --- morin hydrate --- sirtuin 3 --- MMPs --- gomisin N --- lime --- Ziziphus jujuba --- antifungal activity --- ischemia --- migration --- caspases --- small molecules
Choose an application
The 3D printing (3DP) process was patented in 1986; however, only in the last decade has it begun to be used for medical applications, as well as in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. 3DP or additive manufacturing (AM) is a family of technologies that implement layer-by-layer processes in order to fabricate physical models based on a computer aided design (CAD) model. 3D printing permits the fabrication of high degrees of complexity with great reproducibility in a fast and cost-effective fashion. 3DP technology offers a new paradigm for the direct manufacture of individual dosage forms and has the potential to allow for variations in size and geometry as well as control dose and release behavior. Furthermore, the low cost and ease of use of 3DP systems means that the possibility of manufacturing medicines and medical devices at the point of dispensing or at the point of use could become a reality. 3DP thus offers the perfect innovative manufacturing route to address the critical capability gap that hinders the widespread exploitation of personalized medicines for molecules that are currently not easy to deliver. This Special Issue will address new developments in the area of 3D printing and bioprinting for drug delivery applications, covering the recent advantages and future directions of additive manufacturing for pharmaceutical products.
Medicine --- digital pharmacy --- fused deposition modeling 3D printing --- modified drug release --- personalized medicines --- telemedicine --- three dimensional printing --- additive manufacturing --- 3D printed drug products --- printlets --- personalised medicines --- personalized pharmaceuticals --- multiple units --- spheroids --- beads --- acetaminophen --- 3D printing --- fused filament fabrication --- lignin --- antioxidant materials --- wound dressing --- modified release --- filament extrusion --- fused layer modeling --- theophylline --- high API load --- three-dimensional printing --- fixed-dose combinations --- tablets --- multiple-layer dosage forms --- stereolithography --- vat polymerisation --- fused deposition modeling --- polylactic acid --- chemical modification --- MTT assay --- biofilm formation --- warfarin --- semisolid extrusion 3D printing --- inkjet printing --- orodispersible film --- oral powder --- pediatric --- hospital pharmacy --- personalized medicine --- on-demand manufacturing --- drug delivery --- micromedicine --- drug development --- micro-swimmer --- micro-implant --- oral dosages --- microneedle --- high-precision targeting --- controlled release --- geometry --- resolution --- feature size --- release profile --- vascularization --- digital light processing technology --- neural networks --- optimization --- prediction --- FMD --- pregabalin --- gastric floating --- complex structures --- patient-specific --- structural design --- gums --- Fused Deposition Modeling 3D Printing --- processing parameters --- pharmaceutical quality control --- hot-melt extrusion --- solid dosage forms --- 3D printed oral dosage forms --- sustained drug release tablets --- photopolymerization --- paracetamol (acetaminophen) --- aspirin (acetylsalicylic acid) --- amorphous solid dispersion --- poor solubility --- fixed dose combination --- stencil printing --- pharmacoprinting --- orodispersible discs --- orodisperible films --- floating systems --- pulsatile release --- chronotherapeutic delivery --- wound-healing --- 3D bio-printing --- pectin --- propolis --- cyclodextrin --- 3D bio-inks --- fused deposition modelling --- extrusion --- vaginal meshes --- mechanical properties --- drug release --- anti-infective devices --- pelvic organ prolapse --- stress urinary incontinence --- gastro-retentive floating system --- dissolution kinetics --- implantable devices --- subcutaneous --- biodegradable --- prolonged drug delivery --- polymers --- pharmaceuticals --- extrusion-based 3D printing --- fused deposition modeling (FDM) --- pressure-assisted microsyringe (PAM) --- materials --- process --- 3D bioprinting --- polymeric ink --- pseudo-bone --- implantable scaffold --- computer-aided design (CAD) design --- bioprinting --- computer-aided design (CAD) --- pharmaceutics --- digital pharmacy --- fused deposition modeling 3D printing --- modified drug release --- personalized medicines --- telemedicine --- three dimensional printing --- additive manufacturing --- 3D printed drug products --- printlets --- personalised medicines --- personalized pharmaceuticals --- multiple units --- spheroids --- beads --- acetaminophen --- 3D printing --- fused filament fabrication --- lignin --- antioxidant materials --- wound dressing --- modified release --- filament extrusion --- fused layer modeling --- theophylline --- high API load --- three-dimensional printing --- fixed-dose combinations --- tablets --- multiple-layer dosage forms --- stereolithography --- vat polymerisation --- fused deposition modeling --- polylactic acid --- chemical modification --- MTT assay --- biofilm formation --- warfarin --- semisolid extrusion 3D printing --- inkjet printing --- orodispersible film --- oral powder --- pediatric --- hospital pharmacy --- personalized medicine --- on-demand manufacturing --- drug delivery --- micromedicine --- drug development --- micro-swimmer --- micro-implant --- oral dosages --- microneedle --- high-precision targeting --- controlled release --- geometry --- resolution --- feature size --- release profile --- vascularization --- digital light processing technology --- neural networks --- optimization --- prediction --- FMD --- pregabalin --- gastric floating --- complex structures --- patient-specific --- structural design --- gums --- Fused Deposition Modeling 3D Printing --- processing parameters --- pharmaceutical quality control --- hot-melt extrusion --- solid dosage forms --- 3D printed oral dosage forms --- sustained drug release tablets --- photopolymerization --- paracetamol (acetaminophen) --- aspirin (acetylsalicylic acid) --- amorphous solid dispersion --- poor solubility --- fixed dose combination --- stencil printing --- pharmacoprinting --- orodispersible discs --- orodisperible films --- floating systems --- pulsatile release --- chronotherapeutic delivery --- wound-healing --- 3D bio-printing --- pectin --- propolis --- cyclodextrin --- 3D bio-inks --- fused deposition modelling --- extrusion --- vaginal meshes --- mechanical properties --- drug release --- anti-infective devices --- pelvic organ prolapse --- stress urinary incontinence --- gastro-retentive floating system --- dissolution kinetics --- implantable devices --- subcutaneous --- biodegradable --- prolonged drug delivery --- polymers --- pharmaceuticals --- extrusion-based 3D printing --- fused deposition modeling (FDM) --- pressure-assisted microsyringe (PAM) --- materials --- process --- 3D bioprinting --- polymeric ink --- pseudo-bone --- implantable scaffold --- computer-aided design (CAD) design --- bioprinting --- computer-aided design (CAD) --- pharmaceutics
Choose an application
Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
PhGs --- bitter orange --- immunomodulator --- A549 cells --- bergapten --- triptolide --- BMP/Smad --- phytochemicals --- antioxidant enzymes --- kumquat --- MTT assay --- HepaRG cells --- human health --- nanoparticles --- dendritic cells --- drug discovery --- biofilm --- catechin --- antitubercular activity --- Panax notoginseng saponins --- animals --- mouse-hair growth --- A? --- curcumin --- WNT/?-catenin --- copaiba --- AD --- Plasmodium parasites --- traditional medicine --- procyanidin A2 --- PET inhibition --- rheumatoid arthritis --- cannabinoid type 1 receptor --- iridoids --- inflammatory bowel disease --- acute liver injury --- human-hair-follicle dermal papilla cells --- Neuroprotective --- dihydromyricetin --- AMPK --- thromboembolism --- ginseng --- drug design and development --- endoplasmic reticulum stress --- mitogen-activated protein kinase --- Nrf2 --- prenylated flavonoids --- inflammation --- preclinical studies --- plants --- dietary supplements --- Glycyrrhiza uralensis --- aspirin --- Tripterygium wilfordii --- P. eryngii --- reperfusion --- ethnopharmacology --- glucans --- innovation --- hpatoprotection --- hinokitiol --- phytocannabinoid --- antistaphylococcal activity --- Shh/Gli --- green tea --- sesquiterpenoids --- adjuvant-induced arthritis --- yuzu --- hepatotoxicity --- p53/Bax --- Keap1 --- nuclear factor-kappaB --- oxidative stress --- pharmacokinetic study --- cinnamamides --- toxicity --- APAP --- Astragali Radix --- computational softwares --- plant natural product --- onion --- anti-malaria activity --- lipogenesis --- bleeding time --- diterpenoids --- Penthorum chinense Pursh --- myocardial hypertrophy --- automation --- adjuvant --- grapefruit --- melanoma cell --- essential oil --- sweet orange --- Amadori rearrangement compounds --- heme oxygenase --- global health --- calorie restriction --- bergamot --- liposomes --- EGCG --- celastrol --- herb–drug interactions --- cannabigerol --- anti-inflammation --- OH· free radical --- molecular targets --- gluconeogenesis --- microbiome --- SIRT1 --- fucoidan --- heart --- PC12 cells --- acetaminophen --- omics --- time-kill assay --- arthritis --- lychee seed --- bioinformatics --- structure–activity relationship --- precision medicine --- orange petitgrain --- immune modulation --- antiproliferation --- flavonoids --- scoulerine --- oleoresin --- triterpenic acids --- Cannabis sativa --- NAFLD --- biological activity --- differentiation --- oxygen consumption rate --- mitochondrial bioenergetics --- neroli --- apoptosis --- targeted delivery --- platelet activation --- protein kinase --- heat-process --- hepatic steatosis --- hyperglycemia --- natural products --- lemon --- genistein --- neuroinflammation --- astragaloside IV --- cytoxicity --- flavonoid --- paracetamol --- medicinal plants --- insulin resistance --- resveratrol --- mandarin --- garlic --- TGF-? --- morin hydrate --- sirtuin 3 --- MMPs --- gomisin N --- lime --- Ziziphus jujuba --- antifungal activity --- ischemia --- migration --- caspases --- small molecules
Choose an application
Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
PhGs --- bitter orange --- immunomodulator --- A549 cells --- bergapten --- triptolide --- BMP/Smad --- phytochemicals --- antioxidant enzymes --- kumquat --- MTT assay --- HepaRG cells --- human health --- nanoparticles --- dendritic cells --- drug discovery --- biofilm --- catechin --- antitubercular activity --- Panax notoginseng saponins --- animals --- mouse-hair growth --- A? --- curcumin --- WNT/?-catenin --- copaiba --- AD --- Plasmodium parasites --- traditional medicine --- procyanidin A2 --- PET inhibition --- rheumatoid arthritis --- cannabinoid type 1 receptor --- iridoids --- inflammatory bowel disease --- acute liver injury --- human-hair-follicle dermal papilla cells --- Neuroprotective --- dihydromyricetin --- AMPK --- thromboembolism --- ginseng --- drug design and development --- endoplasmic reticulum stress --- mitogen-activated protein kinase --- Nrf2 --- prenylated flavonoids --- inflammation --- preclinical studies --- plants --- dietary supplements --- Glycyrrhiza uralensis --- aspirin --- Tripterygium wilfordii --- P. eryngii --- reperfusion --- ethnopharmacology --- glucans --- innovation --- hpatoprotection --- hinokitiol --- phytocannabinoid --- antistaphylococcal activity --- Shh/Gli --- green tea --- sesquiterpenoids --- adjuvant-induced arthritis --- yuzu --- hepatotoxicity --- p53/Bax --- Keap1 --- nuclear factor-kappaB --- oxidative stress --- pharmacokinetic study --- cinnamamides --- toxicity --- APAP --- Astragali Radix --- computational softwares --- plant natural product --- onion --- anti-malaria activity --- lipogenesis --- bleeding time --- diterpenoids --- Penthorum chinense Pursh --- myocardial hypertrophy --- automation --- adjuvant --- grapefruit --- melanoma cell --- essential oil --- sweet orange --- Amadori rearrangement compounds --- heme oxygenase --- global health --- calorie restriction --- bergamot --- liposomes --- EGCG --- celastrol --- herb–drug interactions --- cannabigerol --- anti-inflammation --- OH· free radical --- molecular targets --- gluconeogenesis --- microbiome --- SIRT1 --- fucoidan --- heart --- PC12 cells --- acetaminophen --- omics --- time-kill assay --- arthritis --- lychee seed --- bioinformatics --- structure–activity relationship --- precision medicine --- orange petitgrain --- immune modulation --- antiproliferation --- flavonoids --- scoulerine --- oleoresin --- triterpenic acids --- Cannabis sativa --- NAFLD --- biological activity --- differentiation --- oxygen consumption rate --- mitochondrial bioenergetics --- neroli --- apoptosis --- targeted delivery --- platelet activation --- protein kinase --- heat-process --- hepatic steatosis --- hyperglycemia --- natural products --- lemon --- genistein --- neuroinflammation --- astragaloside IV --- cytoxicity --- flavonoid --- paracetamol --- medicinal plants --- insulin resistance --- resveratrol --- mandarin --- garlic --- TGF-? --- morin hydrate --- sirtuin 3 --- MMPs --- gomisin N --- lime --- Ziziphus jujuba --- antifungal activity --- ischemia --- migration --- caspases --- small molecules
Choose an application
The 3D printing (3DP) process was patented in 1986; however, only in the last decade has it begun to be used for medical applications, as well as in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. 3DP or additive manufacturing (AM) is a family of technologies that implement layer-by-layer processes in order to fabricate physical models based on a computer aided design (CAD) model. 3D printing permits the fabrication of high degrees of complexity with great reproducibility in a fast and cost-effective fashion. 3DP technology offers a new paradigm for the direct manufacture of individual dosage forms and has the potential to allow for variations in size and geometry as well as control dose and release behavior. Furthermore, the low cost and ease of use of 3DP systems means that the possibility of manufacturing medicines and medical devices at the point of dispensing or at the point of use could become a reality. 3DP thus offers the perfect innovative manufacturing route to address the critical capability gap that hinders the widespread exploitation of personalized medicines for molecules that are currently not easy to deliver. This Special Issue will address new developments in the area of 3D printing and bioprinting for drug delivery applications, covering the recent advantages and future directions of additive manufacturing for pharmaceutical products.
digital pharmacy --- fused deposition modeling 3D printing --- modified drug release --- personalized medicines --- telemedicine --- three dimensional printing --- additive manufacturing --- 3D printed drug products --- printlets --- personalised medicines --- personalized pharmaceuticals --- multiple units --- spheroids --- beads --- acetaminophen --- 3D printing --- fused filament fabrication --- lignin --- antioxidant materials --- wound dressing --- modified release --- filament extrusion --- fused layer modeling --- theophylline --- high API load --- three-dimensional printing --- fixed-dose combinations --- tablets --- multiple-layer dosage forms --- stereolithography --- vat polymerisation --- fused deposition modeling --- polylactic acid --- chemical modification --- MTT assay --- biofilm formation --- warfarin --- semisolid extrusion 3D printing --- inkjet printing --- orodispersible film --- oral powder --- pediatric --- hospital pharmacy --- personalized medicine --- on-demand manufacturing --- drug delivery --- micromedicine --- drug development --- micro-swimmer --- micro-implant --- oral dosages --- microneedle --- high-precision targeting --- controlled release --- geometry --- resolution --- feature size --- release profile --- vascularization --- digital light processing technology --- neural networks --- optimization --- prediction --- FMD --- pregabalin --- gastric floating --- complex structures --- patient-specific --- structural design --- gums --- Fused Deposition Modeling 3D Printing --- processing parameters --- pharmaceutical quality control --- hot-melt extrusion --- solid dosage forms --- 3D printed oral dosage forms --- sustained drug release tablets --- photopolymerization --- paracetamol (acetaminophen) --- aspirin (acetylsalicylic acid) --- amorphous solid dispersion --- poor solubility --- fixed dose combination --- stencil printing --- pharmacoprinting --- orodispersible discs --- orodisperible films --- floating systems --- pulsatile release --- chronotherapeutic delivery --- wound-healing --- 3D bio-printing --- pectin --- propolis --- cyclodextrin --- 3D bio-inks --- fused deposition modelling --- extrusion --- vaginal meshes --- mechanical properties --- drug release --- anti-infective devices --- pelvic organ prolapse --- stress urinary incontinence --- gastro-retentive floating system --- dissolution kinetics --- implantable devices --- subcutaneous --- biodegradable --- prolonged drug delivery --- polymers --- pharmaceuticals --- extrusion-based 3D printing --- fused deposition modeling (FDM) --- pressure-assisted microsyringe (PAM) --- materials --- process --- 3D bioprinting --- polymeric ink --- pseudo-bone --- implantable scaffold --- computer-aided design (CAD) design --- bioprinting --- computer-aided design (CAD) --- pharmaceutics
Listing 1 - 10 of 10 |
Sort by
|