Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.
Research & information: general --- Biology, life sciences --- Biochemistry --- aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A> --- G mutation --- MT-ATP6 --- m.8909T> --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle --- aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A> --- G mutation --- MT-ATP6 --- m.8909T> --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle
Choose an application
Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.
aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A> --- G mutation --- MT-ATP6 --- m.8909T> --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle --- n/a
Listing 1 - 2 of 2 |
Sort by
|