Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
History of engineering & technology --- recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze–thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass --- n/a --- freeze-thaw cycles
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze–thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass --- n/a --- freeze-thaw cycles
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
History of engineering & technology --- recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze-thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
Technology: general issues --- History of engineering & technology --- recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment–curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment --- n/a --- moment-curvature relationship
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment–curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment --- n/a --- moment-curvature relationship
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
Technology: general issues --- History of engineering & technology --- recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment-curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment
Listing 1 - 6 of 6 |
Sort by
|