Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.
Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data
Choose an application
Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.
precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data
Choose an application
Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.
Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity–rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima --- n/a --- radar reflectivity-rain rate relationship
Choose an application
Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.
Research & information: general --- Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity-rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima
Choose an application
Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.
Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data
Choose an application
Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.
satellite radiance --- WRF-Hydro --- meteorological radar --- QPE --- microstructure of rain --- TMPA --- evaluation --- precipitation --- volume matching --- CFSR --- GMI --- terminal velocity --- TRMM-TMPA --- surface rain intensity --- retrieval algorithm --- rain gauges --- tropical cyclone --- CMORPH --- T-Matrix --- Global Precipitation Measurement (GPM) --- statistical evaluation --- vertical air velocity --- heavy rainfall prediction --- GPM IMERG v5 --- Tianshan Mountains --- Red River Basin --- precipitation retrieval --- satellite precipitation --- PERSIANN-CCS --- validation network --- PEMW --- satellite rainfall estimate --- high latitude --- Cyprus --- GPM --- wet deposition --- CloudSat --- thundercloud --- GPS --- satellite remote sensing --- assessment --- numerical weather prediction --- mineral dust --- complex terrain --- mesoscale precipitation patterns --- GNSS meteorology --- lumped models --- satellites --- Southern China --- error analysis --- topography --- cloud scavenging --- radar reflectivity–rain rate relationship --- CHAOS --- RADOLAN --- hydrometeor classification --- TRMM --- thunderstorm --- CHIRPS --- satellite precipitation retrieval --- GPM/IMERG --- GSMaP --- bias correction --- Precise Point Positioning --- Mainland China --- supercooled droplets detection --- SEID --- Saharan dust transportation --- Huaihe River basin --- GPM Microwave Imager --- satellite --- TMPA 3B42RT --- forecast model --- quality indexes --- SEVIRI --- radiometer --- triple collocation --- satellite precipitation product --- Mandra --- synoptic weather types --- drop size distribution (DSD) --- Amazon Basin --- weather radar --- X-band radar --- downscaling --- precipitation rate --- neural networks --- rain rate --- CMIP --- GPM-era IMERG --- GR models --- weather --- typhoon --- satellite rainfall retrievals --- TRMM 3B42 v7 --- validation --- low-cost receivers --- rainfall retrieval techniques --- snowfall detection --- GPM satellite --- Zenith Tropospheric Delay --- 3B42 --- hurricane Harvey --- PERSIANN_CDR --- TRMM 3B42 V7 --- snow water path retrieval --- DPR --- satellite precipitation adjustment --- Peninsular Spain --- RMAPS --- daily rainfall estimations --- streamflow simulation --- regional climate models --- Red–Thai Binh River Basin --- Ensemble Precipitation (EP) algorithm --- cloud radar --- disdrometer --- TRMM-era TMPA --- hydrometeorology --- MSG --- radar data assimilation --- dust washout process --- runoff simulations --- geostationary microwave sensors --- radar --- topographical and seasonal evaluation --- goGPS --- XPOL radar --- TMPA 3B42V7 --- telemetric rain gauge --- harmonie model --- tropical storm rainfall --- linear-scaling approach --- Milešovka observatory --- precipitable water vapor --- heavy precipitation --- hydrological simulation --- reflectivity --- Ka-band --- Tibetan Plateau --- satellite rainfall estimates --- regional rainfall regimes --- Lai Nullah --- microwave scattering --- remote sensing --- pre-processing --- rainfall rate --- MSWEP --- climatology --- VIC model --- CMORPH_CRT --- IMERG --- single frequency GNSS --- PERSIANN --- flood-inducing storm --- climate models --- Pakistan --- precipitating hydrometeor --- data assimilation --- rainfall --- kriging with external drift --- dual-polarization --- quantitative precipitation estimates --- flash flood --- Satellite Precipitation Estimates --- gridded radar precipitation --- regional rainfall sub-regimes --- polar systems
Choose an application
Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.
satellite radiance --- WRF-Hydro --- meteorological radar --- QPE --- microstructure of rain --- TMPA --- evaluation --- precipitation --- volume matching --- CFSR --- GMI --- terminal velocity --- TRMM-TMPA --- surface rain intensity --- retrieval algorithm --- rain gauges --- tropical cyclone --- CMORPH --- T-Matrix --- Global Precipitation Measurement (GPM) --- statistical evaluation --- vertical air velocity --- heavy rainfall prediction --- GPM IMERG v5 --- Tianshan Mountains --- Red River Basin --- precipitation retrieval --- satellite precipitation --- PERSIANN-CCS --- validation network --- PEMW --- satellite rainfall estimate --- high latitude --- Cyprus --- GPM --- wet deposition --- CloudSat --- thundercloud --- GPS --- satellite remote sensing --- assessment --- numerical weather prediction --- mineral dust --- complex terrain --- mesoscale precipitation patterns --- GNSS meteorology --- lumped models --- satellites --- Southern China --- error analysis --- topography --- cloud scavenging --- radar reflectivity–rain rate relationship --- CHAOS --- RADOLAN --- hydrometeor classification --- TRMM --- thunderstorm --- CHIRPS --- satellite precipitation retrieval --- GPM/IMERG --- GSMaP --- bias correction --- Precise Point Positioning --- Mainland China --- supercooled droplets detection --- SEID --- Saharan dust transportation --- Huaihe River basin --- GPM Microwave Imager --- satellite --- TMPA 3B42RT --- forecast model --- quality indexes --- SEVIRI --- radiometer --- triple collocation --- satellite precipitation product --- Mandra --- synoptic weather types --- drop size distribution (DSD) --- Amazon Basin --- weather radar --- X-band radar --- downscaling --- precipitation rate --- neural networks --- rain rate --- CMIP --- GPM-era IMERG --- GR models --- weather --- typhoon --- satellite rainfall retrievals --- TRMM 3B42 v7 --- validation --- low-cost receivers --- rainfall retrieval techniques --- snowfall detection --- GPM satellite --- Zenith Tropospheric Delay --- 3B42 --- hurricane Harvey --- PERSIANN_CDR --- TRMM 3B42 V7 --- snow water path retrieval --- DPR --- satellite precipitation adjustment --- Peninsular Spain --- RMAPS --- daily rainfall estimations --- streamflow simulation --- regional climate models --- Red–Thai Binh River Basin --- Ensemble Precipitation (EP) algorithm --- cloud radar --- disdrometer --- TRMM-era TMPA --- hydrometeorology --- MSG --- radar data assimilation --- dust washout process --- runoff simulations --- geostationary microwave sensors --- radar --- topographical and seasonal evaluation --- goGPS --- XPOL radar --- TMPA 3B42V7 --- telemetric rain gauge --- harmonie model --- tropical storm rainfall --- linear-scaling approach --- Milešovka observatory --- precipitable water vapor --- heavy precipitation --- hydrological simulation --- reflectivity --- Ka-band --- Tibetan Plateau --- satellite rainfall estimates --- regional rainfall regimes --- Lai Nullah --- microwave scattering --- remote sensing --- pre-processing --- rainfall rate --- MSWEP --- climatology --- VIC model --- CMORPH_CRT --- IMERG --- single frequency GNSS --- PERSIANN --- flood-inducing storm --- climate models --- Pakistan --- precipitating hydrometeor --- data assimilation --- rainfall --- kriging with external drift --- dual-polarization --- quantitative precipitation estimates --- flash flood --- Satellite Precipitation Estimates --- gridded radar precipitation --- regional rainfall sub-regimes --- polar systems --- Environmental engineering. --- Environmental monitoring. --- Biomonitoring (Ecology) --- Ecological monitoring --- Environmental quality --- Monitoring, Environmental --- Applied ecology --- Environmental engineering --- Pollution --- Environmental control --- Environmental effects --- Environmental stresses --- Engineering --- Environmental health --- Environmental protection --- Sustainable engineering --- Measurement --- Monitoring
Listing 1 - 7 of 7 |
Sort by
|