Listing 1 - 10 of 52 | << page >> |
Sort by
|
Choose an application
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic coronavirus. First identified in 2012, MERS-CoV has caused over 2460 infections and a fatality rate of about 35% in humans. Similar to severe acute respiratory syndrome coronavirus (SARS-CoV), MERS-CoV likely originated from bats; however, different from SARS-CoV, which potentially utilized palm civets as its intermediate hosts, MERS-CoV likely transmits to humans through dromedary camels. Animal models, such as humanized mice and nonhuman primates, have been developed for studying MERS-CoV infection. Currently, there are no vaccines and therapeutics approved for the prevention and treatment of MERS-CoV infection, although a number of them have been developed preclinically or tested clinically. This book covers one editorial and 16 articles (including seven review articles and nine original research papers) written by researchers working in the field of MERS-CoV. It describes the following three main aspects: (1) MERS-CoV epidemiology, transmission, and pathogenesis; (2) current progress on MERS-CoV animal models, vaccines, and therapeutics; and (3) challenges and future prospects for MERS-CoV research. Overall, this book will help researchers in the MERS-CoV field to further advance their work on the virus. It also has important implications for other coronaviruses as well as viruses outside the coronavirus family with pandemic potentials.
cell–cell fusion --- hDPP4 --- n/a --- therapeutics --- animal models --- HCoV-229E --- Drivers --- camels --- rabbits --- SARS-CoV --- MERS-CoV --- MVA vaccine --- transmission --- RBD --- MERS-CoV nucleocapsid protein --- complement --- animal model --- pseudotyped virus --- combination --- MERS-coronavirus --- peptide --- mouse model --- spike protein --- receptor-binding domain --- prevention and treatment --- coronaviruses --- coronavirus spike glycoprotein --- therapeutic antibodies --- vaccine platforms --- mutation --- severe acute respiratory syndrome coronavirus --- pathogenesis --- fusion inhibitor --- Coronavirus --- murine CD8+ T cell epitope --- lipidomics --- authentic virus --- correlates of immunity --- vaccines --- neutralizing monoclonal antibodies --- Middle East respiratory syndrome coronavirus --- small-molecule inhibitor --- Middle East Respiratory Syndrome Virus --- DPP4 --- pyroptosis --- cross-neutralization --- inflammation --- Qatar --- spike proteins --- One Health --- HKU4 --- nanobodies --- mechanism of action --- neutralizing antibody --- host factors --- UHPLC–MS
Choose an application
Middle East Respiratory Syndrome Coronavirus. --- Coronavirus Infections. --- MERS (Disease). --- Middle East respiratory syndrome --- Coronavirus infections --- Respiratory infections --- Syndromes --- Infections, Coronavirus --- MERS (Middle East Respiratory Syndrome) --- Middle East Respiratory Syndrome --- Coronavirus Infection --- Infection, Coronavirus --- MERS Virus --- MERS-CoV --- Middle East respiratory syndrome-related coronavirus --- MERS Viruses --- Middle East respiratory syndrome related coronavirus --- Virus, MERS --- Viruses, MERS --- Merbecovirus --- Merbecoviruses --- MERS (Disease)
Choose an application
Neutrophils regulate immune responses during homeostasis as well as disease pathogenesis. Especially, the neutrophils extracellular traps largely contribute to necroinflammation. This book highlights the role of neutrophils and neutrophils extracellular traps in various sterile and non-sterile, acute and chronic inflammatory conditions affecting both human and animal health.
Medicine --- head-and-neck cancer --- metastasis --- neutrophils --- NETs --- NETosis --- innate immunity --- G-CSF --- neutrophils extracellular traps --- ophthalmology --- diseases --- neutrophil extracellular traps (NETs) --- Alzheimer’s disease --- multiple sclerosis --- ischemic stroke --- meningitis --- central nervous system --- brain --- neurons --- brain–blood barrier --- equine recurrent uveitis --- horse --- cathelicidin --- neutrophil extracellular traps --- Candida albicans --- quorum sensing --- farnesol --- cerebrospinal fluid --- adults --- children --- infection --- chemokines --- cytokines --- borrelia --- virus --- hemozoin --- plasma --- fibrinogen --- platelet --- malaria --- NLRP3 inflammasome --- IL-1β --- cardiovascular disease --- inflammation --- diabetes --- obesity --- liver injury --- neutrophil extracellular trap --- myeloperoxidase --- carbon tetrachloride --- autoimmunity --- autoimmune diseases --- autoantigens --- SARS-CoV-2 --- coronavirus --- complement --- thrombosis --- MERS-CoV --- necroinflammation --- periodontitis --- neutrophil functions --- n/a --- Alzheimer's disease --- brain-blood barrier
Choose an application
Neutrophils regulate immune responses during homeostasis as well as disease pathogenesis. Especially, the neutrophils extracellular traps largely contribute to necroinflammation. This book highlights the role of neutrophils and neutrophils extracellular traps in various sterile and non-sterile, acute and chronic inflammatory conditions affecting both human and animal health.
head-and-neck cancer --- metastasis --- neutrophils --- NETs --- NETosis --- innate immunity --- G-CSF --- neutrophils extracellular traps --- ophthalmology --- diseases --- neutrophil extracellular traps (NETs) --- Alzheimer’s disease --- multiple sclerosis --- ischemic stroke --- meningitis --- central nervous system --- brain --- neurons --- brain–blood barrier --- equine recurrent uveitis --- horse --- cathelicidin --- neutrophil extracellular traps --- Candida albicans --- quorum sensing --- farnesol --- cerebrospinal fluid --- adults --- children --- infection --- chemokines --- cytokines --- borrelia --- virus --- hemozoin --- plasma --- fibrinogen --- platelet --- malaria --- NLRP3 inflammasome --- IL-1β --- cardiovascular disease --- inflammation --- diabetes --- obesity --- liver injury --- neutrophil extracellular trap --- myeloperoxidase --- carbon tetrachloride --- autoimmunity --- autoimmune diseases --- autoantigens --- SARS-CoV-2 --- coronavirus --- complement --- thrombosis --- MERS-CoV --- necroinflammation --- periodontitis --- neutrophil functions --- n/a --- Alzheimer's disease --- brain-blood barrier
Choose an application
Neutrophils regulate immune responses during homeostasis as well as disease pathogenesis. Especially, the neutrophils extracellular traps largely contribute to necroinflammation. This book highlights the role of neutrophils and neutrophils extracellular traps in various sterile and non-sterile, acute and chronic inflammatory conditions affecting both human and animal health.
Medicine --- head-and-neck cancer --- metastasis --- neutrophils --- NETs --- NETosis --- innate immunity --- G-CSF --- neutrophils extracellular traps --- ophthalmology --- diseases --- neutrophil extracellular traps (NETs) --- Alzheimer's disease --- multiple sclerosis --- ischemic stroke --- meningitis --- central nervous system --- brain --- neurons --- brain-blood barrier --- equine recurrent uveitis --- horse --- cathelicidin --- neutrophil extracellular traps --- Candida albicans --- quorum sensing --- farnesol --- cerebrospinal fluid --- adults --- children --- infection --- chemokines --- cytokines --- borrelia --- virus --- hemozoin --- plasma --- fibrinogen --- platelet --- malaria --- NLRP3 inflammasome --- IL-1β --- cardiovascular disease --- inflammation --- diabetes --- obesity --- liver injury --- neutrophil extracellular trap --- myeloperoxidase --- carbon tetrachloride --- autoimmunity --- autoimmune diseases --- autoantigens --- SARS-CoV-2 --- coronavirus --- complement --- thrombosis --- MERS-CoV --- necroinflammation --- periodontitis --- neutrophil functions
Choose an application
Nature continuously produces biologically useful molecules and provides humankind with life-saving drugs or therapies. Natural products (NPs) offer a vast, unique and fascinating chemical diversity and these molecules have evolved for optimal interactions with biological macromolecules. Moreover, natural products feature pharmacologically active pharmacophores which are pharmaceutically validated starting points for the development of new lead compounds. Over half of all approved (from 1981 to 2014) small-molecule drugs derived from NPs, including unaltered NPs, NPs synthetic derivatives and synthetic natural mimics, originated from a NPs pharmacophore or template. According to the FDA, NPs and their derivatives represent over one-third of all FDA-approved new drugs, in particular for anticancer/antibiotic lead compounds, which are remarkably enriched with NPs.
Research & information: general --- Chemistry --- Organic chemistry --- multi-component reaction --- fusidic acid --- TEMPO-conjugate --- electron paramagnetic resonance (EPR) spectroscopy --- caspase-3 --- incomptine A --- sesquiterpene lactone --- Decachaeta incompta --- cytotoxic activity --- iTRAQ --- apoptosis --- ROS production --- violacein --- hepatocellular carcinoma --- proliferation --- stemness --- natural products --- tumor microenvironment (TME) --- lung cancer --- phytochemicals --- botanical agents --- steroidal alkaloids --- solanidane alkaloids --- demissidine --- solanidine --- flavonoids --- coronavirus --- SARS-CoV-2 --- SARS-CoV --- MERS-CoV --- anticancer activity --- apoptosis resistance --- ophiobolin A --- polygodial --- Wittig reaction --- melanoma --- tumor heterogeneity --- pregnancy --- anti-tumor peptides --- in vitro model --- medicinal herbs --- cancer treatment --- cancer stem cells --- drug resistance --- metastasis --- RCE-4 --- PCD --- ATG 4B --- the Bcl-2–Beclin 1 complex --- Sparticola junci --- structure elucidation --- ECD-TDDFT --- COX inhibitory --- molecular docking --- antiproliferative --- cytotoxic --- Sepedonium ampullosporum --- peptaibols --- ampullosporin --- glutamic acid methyl ester --- solid-phase peptide synthesis --- antifungal --- anticancer --- target identification --- kaempferol --- docking --- DARTS --- Src --- breast cancer --- butein --- frondoside-A --- STAT3 --- angiogenesis --- invasion --- viability --- tumor growth --- marine fungi --- Cosmospora sp. --- soudanone --- Magnaporthe oryzae --- co-culture --- phytopathogen --- molecular networking --- metabolomics --- bispecific antibody --- Trypsiligase --- click chemistry --- biorthogonal chemistry --- antibody engineering --- n/a --- the Bcl-2-Beclin 1 complex
Choose an application
Viruses exhibit an elegant simplicity as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This Special Issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus–host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections but also include novel technological developments.
Research & information: general --- Biology, life sciences --- ectoderm --- mesoderm --- human development --- embryogenesis --- interferon response --- interferon-induced genes --- self-organizing map (SOM) data portrayal --- epigenetic signature --- embryoid body --- TGF-β and Wnt/β-catenin pathway --- interferon --- tumor necrosis factor --- STAT --- interferon regulatory factor --- antiviral --- autoimmunity --- inflammation --- hepatitis C virus --- HCV --- erlin-1 --- erlin-2 --- host factor --- endoplasmic reticulum --- RNA replication --- protein production --- virus production --- lipid droplet --- TAP-GFP --- fluorescent TAP platform --- antigen presentation --- MHC I --- immune evasion --- BoHV-1 UL49.5 --- virus --- calcium channels --- calcium pumps --- virus–host interaction --- Ebola virus --- filovirus --- inclusion bodies --- NXF1 --- liquid organelles --- mRNA export --- cancer immunotherapy --- oncolytic virus --- herpes simplex virus --- immune checkpoint inhibitor --- angiogenesis inhibitor --- rabies --- uDISCO --- 3D imaging --- rabies pathogenicity --- astrocyte infection --- metabolism --- apoptosis --- autophagy --- HIV-1 spread --- cell-free infection --- cell–cell transmission --- 3D cultures --- mathematical modeling --- environmental restriction --- CAD --- pyrimidine synthesis --- HEV --- particle production --- viral replication --- virus entry --- hantavirus --- Tula virus --- replication --- factory --- RNA synthesis --- Golgi --- stress granules --- actin cytoskeleton --- nucleocapsid transport --- Arp2/3 complex --- ERAP2 --- ERAP2/Iso3 --- microbial infections --- alternative splicing --- SARS-CoV-2 --- host cell response --- coronavirus --- MERS-CoV --- SARS-CoV --- sialic acid --- Siglec --- antiviral peptide --- enveloped viruses --- membrane phosphatidylserine --- envelope disruption --- membrane damage --- antiviral autophagy --- galectin --- bacterial invasion --- adenovirus --- lysophagy --- ESCRT machinery --- cedar virus --- henipavirus --- fusion protein --- endocytosis --- biological activity --- feline coronavirus --- feline enteric coronavirus --- FECV --- feline infectious peritonitis virus --- FIPV --- feline intestinal organoids --- alphaviruses --- cell death --- mosquito --- tolerance
Choose an application
Viruses exhibit an elegant simplicity as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This Special Issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus–host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections but also include novel technological developments.
ectoderm --- mesoderm --- human development --- embryogenesis --- interferon response --- interferon-induced genes --- self-organizing map (SOM) data portrayal --- epigenetic signature --- embryoid body --- TGF-β and Wnt/β-catenin pathway --- interferon --- tumor necrosis factor --- STAT --- interferon regulatory factor --- antiviral --- autoimmunity --- inflammation --- hepatitis C virus --- HCV --- erlin-1 --- erlin-2 --- host factor --- endoplasmic reticulum --- RNA replication --- protein production --- virus production --- lipid droplet --- TAP-GFP --- fluorescent TAP platform --- antigen presentation --- MHC I --- immune evasion --- BoHV-1 UL49.5 --- virus --- calcium channels --- calcium pumps --- virus–host interaction --- Ebola virus --- filovirus --- inclusion bodies --- NXF1 --- liquid organelles --- mRNA export --- cancer immunotherapy --- oncolytic virus --- herpes simplex virus --- immune checkpoint inhibitor --- angiogenesis inhibitor --- rabies --- uDISCO --- 3D imaging --- rabies pathogenicity --- astrocyte infection --- metabolism --- apoptosis --- autophagy --- HIV-1 spread --- cell-free infection --- cell–cell transmission --- 3D cultures --- mathematical modeling --- environmental restriction --- CAD --- pyrimidine synthesis --- HEV --- particle production --- viral replication --- virus entry --- hantavirus --- Tula virus --- replication --- factory --- RNA synthesis --- Golgi --- stress granules --- actin cytoskeleton --- nucleocapsid transport --- Arp2/3 complex --- ERAP2 --- ERAP2/Iso3 --- microbial infections --- alternative splicing --- SARS-CoV-2 --- host cell response --- coronavirus --- MERS-CoV --- SARS-CoV --- sialic acid --- Siglec --- antiviral peptide --- enveloped viruses --- membrane phosphatidylserine --- envelope disruption --- membrane damage --- antiviral autophagy --- galectin --- bacterial invasion --- adenovirus --- lysophagy --- ESCRT machinery --- cedar virus --- henipavirus --- fusion protein --- endocytosis --- biological activity --- feline coronavirus --- feline enteric coronavirus --- FECV --- feline infectious peritonitis virus --- FIPV --- feline intestinal organoids --- alphaviruses --- cell death --- mosquito --- tolerance
Choose an application
Nature continuously produces biologically useful molecules and provides humankind with life-saving drugs or therapies. Natural products (NPs) offer a vast, unique and fascinating chemical diversity and these molecules have evolved for optimal interactions with biological macromolecules. Moreover, natural products feature pharmacologically active pharmacophores which are pharmaceutically validated starting points for the development of new lead compounds. Over half of all approved (from 1981 to 2014) small-molecule drugs derived from NPs, including unaltered NPs, NPs synthetic derivatives and synthetic natural mimics, originated from a NPs pharmacophore or template. According to the FDA, NPs and their derivatives represent over one-third of all FDA-approved new drugs, in particular for anticancer/antibiotic lead compounds, which are remarkably enriched with NPs.
multi-component reaction --- fusidic acid --- TEMPO-conjugate --- electron paramagnetic resonance (EPR) spectroscopy --- caspase-3 --- incomptine A --- sesquiterpene lactone --- Decachaeta incompta --- cytotoxic activity --- iTRAQ --- apoptosis --- ROS production --- violacein --- hepatocellular carcinoma --- proliferation --- stemness --- natural products --- tumor microenvironment (TME) --- lung cancer --- phytochemicals --- botanical agents --- steroidal alkaloids --- solanidane alkaloids --- demissidine --- solanidine --- flavonoids --- coronavirus --- SARS-CoV-2 --- SARS-CoV --- MERS-CoV --- anticancer activity --- apoptosis resistance --- ophiobolin A --- polygodial --- Wittig reaction --- melanoma --- tumor heterogeneity --- pregnancy --- anti-tumor peptides --- in vitro model --- medicinal herbs --- cancer treatment --- cancer stem cells --- drug resistance --- metastasis --- RCE-4 --- PCD --- ATG 4B --- the Bcl-2–Beclin 1 complex --- Sparticola junci --- structure elucidation --- ECD-TDDFT --- COX inhibitory --- molecular docking --- antiproliferative --- cytotoxic --- Sepedonium ampullosporum --- peptaibols --- ampullosporin --- glutamic acid methyl ester --- solid-phase peptide synthesis --- antifungal --- anticancer --- target identification --- kaempferol --- docking --- DARTS --- Src --- breast cancer --- butein --- frondoside-A --- STAT3 --- angiogenesis --- invasion --- viability --- tumor growth --- marine fungi --- Cosmospora sp. --- soudanone --- Magnaporthe oryzae --- co-culture --- phytopathogen --- molecular networking --- metabolomics --- bispecific antibody --- Trypsiligase --- click chemistry --- biorthogonal chemistry --- antibody engineering --- n/a --- the Bcl-2-Beclin 1 complex
Choose an application
Nature continuously produces biologically useful molecules and provides humankind with life-saving drugs or therapies. Natural products (NPs) offer a vast, unique and fascinating chemical diversity and these molecules have evolved for optimal interactions with biological macromolecules. Moreover, natural products feature pharmacologically active pharmacophores which are pharmaceutically validated starting points for the development of new lead compounds. Over half of all approved (from 1981 to 2014) small-molecule drugs derived from NPs, including unaltered NPs, NPs synthetic derivatives and synthetic natural mimics, originated from a NPs pharmacophore or template. According to the FDA, NPs and their derivatives represent over one-third of all FDA-approved new drugs, in particular for anticancer/antibiotic lead compounds, which are remarkably enriched with NPs.
Research & information: general --- Chemistry --- Organic chemistry --- multi-component reaction --- fusidic acid --- TEMPO-conjugate --- electron paramagnetic resonance (EPR) spectroscopy --- caspase-3 --- incomptine A --- sesquiterpene lactone --- Decachaeta incompta --- cytotoxic activity --- iTRAQ --- apoptosis --- ROS production --- violacein --- hepatocellular carcinoma --- proliferation --- stemness --- natural products --- tumor microenvironment (TME) --- lung cancer --- phytochemicals --- botanical agents --- steroidal alkaloids --- solanidane alkaloids --- demissidine --- solanidine --- flavonoids --- coronavirus --- SARS-CoV-2 --- SARS-CoV --- MERS-CoV --- anticancer activity --- apoptosis resistance --- ophiobolin A --- polygodial --- Wittig reaction --- melanoma --- tumor heterogeneity --- pregnancy --- anti-tumor peptides --- in vitro model --- medicinal herbs --- cancer treatment --- cancer stem cells --- drug resistance --- metastasis --- RCE-4 --- PCD --- ATG 4B --- the Bcl-2-Beclin 1 complex --- Sparticola junci --- structure elucidation --- ECD-TDDFT --- COX inhibitory --- molecular docking --- antiproliferative --- cytotoxic --- Sepedonium ampullosporum --- peptaibols --- ampullosporin --- glutamic acid methyl ester --- solid-phase peptide synthesis --- antifungal --- anticancer --- target identification --- kaempferol --- docking --- DARTS --- Src --- breast cancer --- butein --- frondoside-A --- STAT3 --- angiogenesis --- invasion --- viability --- tumor growth --- marine fungi --- Cosmospora sp. --- soudanone --- Magnaporthe oryzae --- co-culture --- phytopathogen --- molecular networking --- metabolomics --- bispecific antibody --- Trypsiligase --- click chemistry --- biorthogonal chemistry --- antibody engineering
Listing 1 - 10 of 52 | << page >> |
Sort by
|