Listing 1 - 10 of 286 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Choose an application
Magnetic fields influence many natural and man-made flows. They are routinely used in industry to heat, pump, stir and levitate liquid metals. There is the terrestrial magnetic field which is maintained by fluid motion in the earth's core, the solar magnetic field, which generates sunspots and solar flares, and the galactic field which influences the formation of stars. This is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids. This book is intended to serve as an introductory text for advanced undergraduates and postgraduate students in physics, applied mathematics and engineering. The material in the text is heavily weighted towards incompressible flows and to terrestrial (as distinct from astrophysical) applications. The final sections of the text also contain an outline of the latest advances in the metallurgical applications of MHD and so are relevant to professional researchers in applied mathematics, engineering and metallurgy.
Choose an application
A systematic parametric analysis has been performed using asymptotic numerical methods for determination of MHD flows near gaps of electrically insulating inserts in well conducting pipes. Such gaps could be present at several positions in fusion blankets, where cutting and rewelding by remotely controlled tools is foreseen. Gaps in the insulation provide additional current paths which leads to increased current density and braking electromagnetic Lorentz forces.
Choose an application
This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.
Listing 1 - 10 of 286 | << page >> |
Sort by
|