Listing 1 - 9 of 9
Sort by

Book
Amélioration des fonctions effectrices de lympocytes infiltrants les tumeurs par un galactomannane : le GM-CT-01

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Le dysfonctionnement de certains lymphocytes T infiltrant les tumeurs humaines semble lié à un défaut de polarisation de la machinerie sécrétoire

Loading...
Export citation

Choose an application

Bookmark

Abstract

Some studies have shown that cytotoxic T lymphocytes are able to recognize tumor ceNs but tumorinfiltrating lymphocytes (TIL) seem to have functional defects. The group of Pierre van der Bruggen has shown that the functional impairment observed in tumor-infiltrating lymphocytes could be corrected by treatments with galectin competitor ligands. This suggests that galectins that are abundant in tumors could be responsible for these defects. In contrast with blood CD8 T cells, TIL that were treated with LacNAC, a galectin competitor ligand, and stimulated ex vivo secreted more IFN-y than untreated TIL. We have tried to better understand the defect of TIL by examining whether IFN-y production or secretion is affected. We have also investigated cytoskeleton remodeling which contributes to the secretory machinery. We performed intracellular staining of IFN-y after ex vivo stimulation. No difference was observed between LacNAc-treated and non-treated TIL samples. We also quantified the cytokine mRNA using qPCR. Despite important variations between samples, LacNAc treatment did not seem to influence the level of IFN-y mRNA in TIL. These results indicate that IFN-y is produced after TIL ex vivo stimulation and suggest that the difference observed at the secretion level is neither due to a lack of activation of the TIL nor to a defect in the cytokine production. We temporarily concluded that untreated TIL are poorly able to secrete IFN-y. We have examined TIL by confocal microscopy with a focus on microtubule network and actin cytoskeleton, which have been associated with secretion in lymphocytes. We studied the polarization of the Microtubule Organizing Center (MTOC) of the TIL towards the target. We observed a defect of MTOC docking at the synapse between untreated TIL and antigen presenting cells. MTOC docking was improved in LacNAc-treated TIL. In another unrelated project, we have produced recombinant galectin-1 with the objective to better understand the mechanisms underlying the role of galectins in TIL defects. This protein wiIl be useful in the laboratory to assess, in the future, the ability of galectin-1 and -3 to induce CD8 T cells dysfunction in vitro Plusieurs études ont démontré que les lymphocytes T cytotoxiques, bien qu’équipés pour éliminer les cellules cancéreuses, ne fonctionnent pas correctement lorsqu’ils sont dans les tumeurs. L’équipe de Pierre van der Bruggen a récemment montré que des lymphocytes T CD8 infiltrant les tumeurs (TIL) présentaient des défauts fonctionnels probablement imputables à une protéine abondante dans les tumeurs, la galectine-3. Il a notamment été observé, ex-vivo, que les lymphocytes T CD8 infiltrant les tumeurs, contrairement aux CD8 sanguins montrent un défaut de sécrétion d’interféron-gamma après restimulation. Ce défaut peut être levé par des ligands compétiteurs des galectines, comme le LacNAc. Notre projet s’insère dans les efforts de l’équipe pour mieux comprendre les mécanismes de ces déficiences fonctionnelles et a pour but de déterminer si le défaut se situe au niveau de la production de la protéine ou de sa sécrétion et si des perturbations dans le remodelage du cytosquelette sont impliquées. Nous avons étudié, dans les TIL CD8, la production de l’ARN messager de l’interféron-gamma par PCR quantitative. Nos résultats semblent indiquer que le niveau d’ARN messager est le même dans les TIL qu’ils aient ou non été traités au LacNAc avant d’être stimulés. Nous avons également analysé la production de la protéine par marquage intracellulaire et analyse en cytométrie en flux. La proportion de cellules positives pour l’IFN-y était similaire dans les échantillons traités ou non au LacNAc. Nos résultats suggèrent donc que les TIL soient capables de s’activer et de produire la cytokine mais qu’ils soient incapables de la sécréter correctement. Des défauts de remodelage du cytosquelette de ces TIL pourraient expliquer le déficit de sécrétion d’interféron-gamma observé. En effet, il est connu que l’organisation des microfilaments de tubuline et d’actine participe à l’exocytose des cytokines. Pour étudier cette hypothèse, nous avons développé une technique permettant d’observer, en microscopie confocale, les remodelages du cytosquelette induits par la rencontre entre un lymphocyte T et sa cible. Nous nous sommes intéressés en particulier au centre organisateur des microtubules (MTOC) et à sa polarisation vers la cible du lymphocyte T, à la synapse immunologique. Nous avons observé que, dans les TIL CD8, restimulés ex-vivo, le MTOC ne s’ancre pas toujours à la membrane au point de contact avec la cible, ce qui pourrait expliquer le défaut de sécrétion observé. Un traitement des TIL au LacNAc remédie largement à ce défaut. Certaines expériences, dans la littérature, suggèrent que la galectine-3 pourrait ne pas être seule galectine responsable du dysfonctionnement des lymphocytes T infiltrant les tumeurs. Nous avons donc produit de la galectine-1 recombinante dans le but d’étudier si elle peut induire, in-vitro, ces dysfonctionnements des lymphocytes, seule, ou en combinaison avec la galectine-3.


Book
Identification de facteurs de transcription qui interagissent avec les protéines SMADs dans les lymphocytes T. Humains
Authors: --- ---
Year: 2014 Publisher: Bruxelles: UCL. Faculté de pharmacie et des sciences biomédicales,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Le TGF-P est une cytokine aux effets immunosuppresseurs puissants. Le TGF-P inhibe notamment la prolifération des lymphocytes T. Chez les patients cancéreux, l'effet cytostatique du TGF-P sur les lymphocytes T pourrait contribuer à l'inhibition des réponses immunes anti-tumorales et empêcher le rejet des tumeurs.La voie canonique de transduction du signal par le TGF-P passe par les facteurs de transcription SMADs. Le TGF-P régule l'expression d'un grand nombre de gènes, grâce à l'association des SMADs à d'autres facteurs de transcription dont la nature dépend du contexte cellulaire. Les mécanismes conduisant à l'effet cytostatique du TGF-P ont été bien décrits dans les cellules épithéliales. Cependant, des analyses préliminaires réalisées au laboratoire semblent indiquer que les mécanismes opérants dans les lymphocytes T sont différents de ceux opérant dans les cellules épithéliales. L'objectif de mon travail est d'identifier les cofacteurs qui s'associent aux SMADs et qui participent à l'effet cytostatique du TGF-P dans les lymphocytes T.Dans un premier temps, nous avons utilisé le programme TfactS afin d'identifier des facteurs de transcription dont l'activité est régulée par le TGF-P dans les lymphocytes T. Nous avons obtenu une liste de 37 candidats. Nous avons tenté de vérifier expérimentalement si nos candidats interagissaient avec les SMADs par deux techniques indépendantes : d'une part, par co-immunoprécipitation , et d'autre part, par Proximity Ligation Assay (PLA). Nous avons tout d'abord validé ces deux approches dans les lymphocytes T à l'aide d'un contrôle positif, à savoir l'interaction entre SMAD2/3 et SMAD4 induite par un signal TGF-p. Nous avons ensuite appliqué ces deux techniques à une série de candidats que nous avions sélectionnés dans notre liste de 37 cofacteurs. Après une première série d'analyses, deux candidats semblent montrer une interaction avec SMAD2/3 : il s'agit des facteurs de transcription c-Rel et FoxO1.Enfin, nous avons voulu déterminer à l'aide d'un test de prolifération le rôle de ces deux facteurs de transcription dans l'effet cytostatique du TGF-p. Pour ce faire, nous avons électroporé un clone de lymphocyte T CD4+ avec des ARN interférants ciblant soit le gène REL, soit le gène FOXO 1. Cependant, les ARN interférants utilisés n'étaient pas assez efficaces et nous n'avons pas pu observer de diminution de l'effet cytostatique du TGF-P dans ces cellules. De nouvelles expériences utilisant des ARN interférants plus efficaces seront donc nécessaires afin de conclure au rôle de ces 2 facteurs de transcription dans l'effet cytostatique du TGF-P dans les lymphocytes T. Identification of the transcription factors interacting with the SMADs in human T lymphocytesTGF-P is a cytokine with patent immunosuppressive effects. Notably, TGF-P inhibits the proliferation of T cells. In cancer patients, the cytostatic effect of TGF-P on T cells could contribute to the inhibition of anti-tumor immune responses and prevent tumor rejection.Signal transduction upon TGF-P stimulation involves the SMAD transcription factors. SMADs associate to other transcription factors, whose identity depends on cell type and context. As a consequence, which genes are regulated in response to TGF-P signais is also dependent on cell type and context. SMAD cofactors and TGF-P target genes responsible for the cytostatic effect of TGF-P have been well characterized in epithelial cells. However, preliminary analyses in our laboratory suggest that the mechanisms at play in T cells are different from the ones operating in epithelial cells. The aim of my work is to identify cofactors that associate with SMADs and participate to the cytostatic effect of TGF-P in human T cells.We used the TfactS program to identify transcription factors whose activity appears to be regulated in response to TGF-P in human T cells. We obtained a list of 37 candidates.We tried to verify experimentally if some of the candidates interact with SMADs, using two independent techniques, namely co-immunoprecipitation and Proximity Ligation Assay. We validated these two approaches in human T cells using the known interaction between SMAD2/3 and SMAD4 as a positive contrai. We then applied these techniques to 6 of the 37 candidates. Our results indicate that two candidates, namely c-Rel and Foxü l, interact with SMAD2/3.Finally, we attempted to test if these two transcription factors play a role in the cytostatic effect of TGF-P on human T cells. We electroporated a human CD4+ T cell clone with siRNAs targeting the REL or the FOXOJ gene. Unfortunately, the siRNAs did not efficiently decrease REL and FOXOJ mRNA levels, and we observed no decrease in the cytostatic effect of TGF-P in these cells. Further experiments, using for example more patent siRNAs, are required to conclude about the role of these two transcription factors in the cytostatic effect of TGF- p in human T cells.


Dissertation
Experimental immunotherapy of ovarian cancer
Authors: ---
Year: 1995 Publisher: Leiden s.n.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cell therapy
Author:
ISBN: 4431702539 4431685081 4431685065 Year: 2000 Publisher: Tokyo Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern cell biology has brought improvements in therapy for advanced malignant diseases through immunomodulation, hematopoietic stem cell transplantation, and other advanced techniques. Collected here are selected papers from the Fifth International Symposium of Keio University for Life Sciences and Medicine on Cell Therapy. All chapters include innovative basic research for clinical application: immunotherapy, cancer vaccination, molecular biology of hematopoietic stem cells, stem cell processing, and gene therapy. The book is divided into three parts: Immunotherapy for malignant diseases; Hematopoietic stem cell biology and clinical application; and International collaboration in hematopoietic stem cell transplantation. Included in the third part is information on bone marrow registries from around the world. The book thus presents up-to-date information on biological and clinical aspects of treatment, with insight into the future of cell therapy.

Keywords

Hematopoietic Stem Cell Transplantation. --- Hematopoietic Stem Cells --- Immunotherapy, Adoptive. --- Neoplasms --- Cellular therapy --- Cell therapy --- Cells --- Therapy, Cellular --- Organotherapy --- Therapeutics, Physiological --- Transplantation of organs, tissues, etc. --- Cell transplantation --- Adoptive Immunotherapy --- Cellular Immunotherapy, Adoptive --- Immunotherapy, Adoptive Cellular --- Adoptive Cellular Immunotherapy --- Adoptive Cellular Immunotherapies --- Adoptive Immunotherapies --- Cellular Immunotherapies, Adoptive --- Immunotherapies, Adoptive --- Immunotherapies, Adoptive Cellular --- Killer Cells, Lymphokine-Activated --- Cytapheresis --- Lymphocytes, Tumor-Infiltrating --- Monocytes, Activated Killer --- Transplantation, Hematopoietic Stem Cell --- Stem Cell Transplantation, Hematopoietic --- Bone Marrow Transplantation --- Bone Marrow Purging --- Hematopoietic Stem Cell Mobilization --- physiology. --- therapy. --- Therapeutic use --- transplantation --- Hematopoietic Stem Cell Transplantation --- Immunotherapy, Adoptive --- physiology --- therapy --- Physiology --- Therapy --- CAR T-Cell Therapy --- Chimeric Antigen Receptor Therapy --- CAR T Cell Therapy --- CAR T-Cell Therapies --- T-Cell Therapies, CAR --- T-Cell Therapy, CAR --- Therapies, CAR T-Cell --- Therapy, CAR T-Cell --- Receptors, Chimeric Antigen --- Cell biology. --- Molecular biology. --- Oncology  . --- Cell Biology. --- Molecular Medicine. --- Oncology. --- Tumors --- Molecular biochemistry --- Molecular biophysics --- Biochemistry --- Biophysics --- Biomolecules --- Systems biology --- Cell biology --- Cellular biology --- Biology


Book
Basics of chimeric antigen receptor (CAR) immunotherapy
Author:
ISBN: 0128197471 0128195738 9780128197479 9780128195734 Year: 2020 Publisher: [London]

Loading...
Export citation

Choose an application

Bookmark

Abstract


Periodical
Transplantation and Cellular Therapy
ISSN: 26666367

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Hematopoietic stem cells --- Cellular therapy --- Hematopoietic stem cell disorders --- Cellular therapy. --- Hematopoietic Stem Cell Transplantation. --- Immunotherapy, Adoptive. --- Transplantation --- Treatment. --- Transplantation. --- Adoptive Immunotherapy --- CAR T-Cell Therapy --- Cellular Immunotherapy, Adoptive --- Chimeric Antigen Receptor Therapy --- Immunotherapy, Adoptive Cellular --- Adoptive Cellular Immunotherapy --- Adoptive Cellular Immunotherapies --- Adoptive Immunotherapies --- CAR T Cell Therapy --- CAR T-Cell Therapies --- Cellular Immunotherapies, Adoptive --- Immunotherapies, Adoptive --- Immunotherapies, Adoptive Cellular --- T-Cell Therapies, CAR --- T-Cell Therapy, CAR --- Therapies, CAR T-Cell --- Therapy, CAR T-Cell --- Receptors, Chimeric Antigen --- Killer Cells, Lymphokine-Activated --- Cytapheresis --- Lymphocytes, Tumor-Infiltrating --- Monocytes, Activated Killer --- Transplantation, Hematopoietic Stem Cell --- Stem Cell Transplantation, Hematopoietic --- Hematopoietic Stem Cells --- Bone Marrow Transplantation --- Bone Marrow Purging --- Hematopoietic Stem Cell Mobilization --- HSCs (Hematopoietic stem cells) --- Blood cells --- Bone marrow cells --- Hematopoietic system --- Multipotent stem cells --- Cell therapy --- Cells --- Therapy, Cellular --- Organotherapy --- Therapeutics, Physiological --- Transplantation of organs, tissues, etc. --- Cell transplantation --- Hematopoietic stem cell diseases --- Blood --- transplantation --- Therapeutic use --- Diseases


Book
Chimeric antigen receptor T-cell therapies for cancer
Authors: ---
ISBN: 0323661815 9780323755979 0323755976 9780323661812 Year: 2020 Publisher: Amsterdam, Netherlands

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

T cells --- Tumor antigens. --- Receptors, Chimeric Antigen --- Neoplasms --- Immunotherapy, Adoptive. --- Receptors, Antigen, T-Cell. --- Cell- and Tissue-Based Therapy. --- Receptors. --- therapeutic use. --- therapy. --- Therapy, Cell --- Therapy, Tissue --- Cell Therapy --- Tissue Therapy --- Cell and Tissue Based Therapy --- Tissue Therapy, Historical --- Receptors, T-Cell Antigen --- T-Cell Antigen Receptor --- T-Cell Receptor --- Antigen Receptors, T-Cell --- T-Cell Receptors --- Antigen Receptor, T-Cell --- Antigen Receptors, T Cell --- Receptor, T-Cell --- Receptor, T-Cell Antigen --- Receptors, T Cell Antigen --- Receptors, T-Cell --- T Cell Antigen Receptor --- T Cell Receptor --- T Cell Receptors --- T-Cell Antigen Receptors --- CD3 Complex --- Genes, T-Cell Receptor --- Complementarity Determining Regions --- Adoptive Immunotherapy --- CAR T-Cell Therapy --- Cellular Immunotherapy, Adoptive --- Chimeric Antigen Receptor Therapy --- Immunotherapy, Adoptive Cellular --- Adoptive Cellular Immunotherapy --- Adoptive Cellular Immunotherapies --- Adoptive Immunotherapies --- CAR T Cell Therapy --- CAR T-Cell Therapies --- Cellular Immunotherapies, Adoptive --- Immunotherapies, Adoptive --- Immunotherapies, Adoptive Cellular --- T-Cell Therapies, CAR --- T-Cell Therapy, CAR --- Therapies, CAR T-Cell --- Therapy, CAR T-Cell --- Killer Cells, Lymphokine-Activated --- Cytapheresis --- Lymphocytes, Tumor-Infiltrating --- Monocytes, Activated Killer --- Antigens --- Tumor markers --- T cell receptors --- T lymphocyte antigen receptors --- Cell receptors


Periodical
The journal of gene medicine.
Authors: ---
ISSN: 15212254 1099498X Year: 1999 Publisher: New York, NY : Chichester, West Sussex, UK : John Wiley & Sons, John Wiley & Sons, Ltd.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Genetic transformation --- Gene therapy --- Cellular therapy --- Gene Transfer Techniques. --- Genetic Therapy. --- Thérapie génique --- Thérapie cellulaire --- Cellular therapy. --- Gene therapy. --- Genetic transformation. --- Gene Transfer --- Gene Therapy --- Therapy, Gene --- Gene transfer --- Transformation (Genetics) --- DNA Therapy --- Gene Therapy, Somatic --- Genetic Therapy, Gametic --- Genetic Therapy, Somatic --- Therapy, DNA --- Therapy, Somatic Gene --- Somatic Gene Therapy --- Gametic Genetic Therapies --- Gametic Genetic Therapy --- Genetic Therapies --- Genetic Therapies, Gametic --- Genetic Therapies, Somatic --- Somatic Genetic Therapies --- Somatic Genetic Therapy --- Therapies, Gametic Genetic --- Therapies, Genetic --- Therapies, Somatic Genetic --- Therapy, Gametic Genetic --- Therapy, Genetic --- Therapy, Somatic Genetic --- Cell therapy --- Cells --- Therapy, Cellular --- Therapeutic use --- Genetic engineering --- Therapeutics --- Genetic recombination --- Microbial genetics --- Nucleic acids --- Transfection --- Gene Transfer Techniques --- Genetic Services --- Genes, Transgenic, Suicide --- Organotherapy --- Therapeutics, Physiological --- Transplantation of organs, tissues, etc. --- Cell transplantation --- Gene Transfer. --- Gene Delivery Systems --- Gene Transfer Technique --- Transgenesis --- Delivery System, Gene --- Delivery Systems, Gene --- Gene Delivery System --- Technique, Gene Transfer --- Techniques, Gene Transfer --- Transfer Technique, Gene --- Transfer Techniques, Gene --- Genetic Therapy --- Transgenes --- Genetics --- Gene Therapy. --- Gene Therap. --- Gene Transfer, Horizontal --- Genetic Structures --- Genetic Phenomena --- Recombination, Interspecific --- Gene Transfer, Lateral --- Horizontal Gene Transfer --- Lateral Gene Transfer --- Recombination, Interspecies --- Gene Transfers, Lateral --- Interspecies Recombination --- Interspecific Recombination --- Lateral Gene Transfers --- Thérapie génique. --- Transformation, Genetic. --- Genetic Transformation --- Genetic Transformations --- Transformations, Genetic --- Crosses, Genetic --- Transduction, Genetic --- Immunotherapy, Adoptive --- Adoptive Immunotherapy --- CAR T-Cell Therapy --- Cellular Immunotherapy, Adoptive --- Chimeric Antigen Receptor Therapy --- Immunotherapy, Adoptive Cellular --- Adoptive Cellular Immunotherapy --- Adoptive Cellular Immunotherapies --- Adoptive Immunotherapies --- CAR T Cell Therapy --- CAR T-Cell Therapies --- Cellular Immunotherapies, Adoptive --- Immunotherapies, Adoptive --- Immunotherapies, Adoptive Cellular --- T-Cell Therapies, CAR --- T-Cell Therapy, CAR --- Therapies, CAR T-Cell --- Therapy, CAR T-Cell --- Receptors, Chimeric Antigen --- Killer Cells, Lymphokine-Activated --- Cytapheresis --- Lymphocytes, Tumor-Infiltrating --- Monocytes, Activated Killer

Listing 1 - 9 of 9
Sort by