Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Smart sensors are technologies designed to facilitate the monitoring operations. For instance, power consumption can be minimized through on-board processing and smart interrogation algorithms, and state detection enhanced through collaboration between sensor nodes. Applied to structural health monitoring, smart sensors are key enablers of sparse and dense sensor networks capable of monitoring full-scale structures and components. They are also critical in empowering operators with decision making capabilities. The objective of this Special Issue is to generate discussions on the latest advances in research on smart sensing technologies for structural health monitoring applications, with a focus on decision-enabling systems. This Special Issue covers a wide range of related topics such as innovative sensors and sensing technologies for crack, displacement, and sudden event monitoring, sensor optimization, and novel sensor data processing algorithms for damage and defect detection, operational modal analysis, and system identification of a wide variety of structures (bridges, transmission line towers, high-speed trains, masonry light houses, etc.).
NSGA-II --- wind force --- wavelet packet decomposition --- structural health monitoring --- amplitude spectrum --- environmental noise --- patch antenna --- damage identification --- event-triggered sensing --- Particle Swarm Optimization (PSO) algorithm --- high-speed train --- low-velocity impacts --- concrete structures --- sensors distribution optimization --- acceleration --- digital sampling moiré --- crack --- displacement sensor --- length effect --- FBG sensor array --- SHM --- space window --- Bayesian blind source separation --- feature selection --- stress detection --- wheel minor defect --- strain --- uniaxial stress measurement --- turbine --- impact identification --- helical antenna --- energy analysis of wavelet band --- strain wave --- time window --- structural steel members --- steel frame --- acoustoelastic effect --- demand-based nodes --- online wayside detection --- sensor --- bridge --- sensitivity --- acoustic emission --- bending stiffness --- wireless smart sensors --- distributed dense sensor network --- mapping construction --- data fusion --- fuzzy classification --- shear-wave birefringence --- normal mode --- piezoelectric wafer active sensors --- resonant frequency --- electromagnetic oscillation --- settlement --- sensor optimization --- modal frequencies --- perturbation theory --- feature extraction --- Virtual Distortion Method (VDM) --- reflective optical sensor --- fibre bundle --- smartphones --- crack identification --- active sensing --- test vehicle --- calibration --- stretching method --- model updating --- rotary ultrasonic array --- 2D crack growth --- data processing --- damage detection --- impactor stiffness --- tip clearance --- transmission tower --- phase spectrum --- concrete crack --- structural impact monitoring --- shaking table tests --- optical crack growth sensor --- steel strand --- passive sensing --- sudden event monitoring --- aero engine --- principal component analysis
Choose an application
The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.
History of engineering & technology --- Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers—CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- n/a --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials. --- carbon fiber-reinforced polymers-CFRP
Choose an application
The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.
Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers—CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- n/a --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials. --- carbon fiber-reinforced polymers-CFRP
Choose an application
The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.
History of engineering & technology --- Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers-CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials.
Listing 1 - 4 of 4 |
Sort by
|