Listing 1 - 10 of 23 | << page >> |
Sort by
|
Choose an application
Lorentz transformations. --- Lorentz transformations --- Lorentz, Transformations de
Choose an application
Choose an application
Relativity --- Gravity --- Lorentz transformations --- Relativity --- Gravity --- Lorentz transformations
Choose an application
Choose an application
This book presents a review of various issues related to Lorentz symmetry breaking. Explicitly, we consider (i) motivations for introducing Lorentz symmetry breaking, (ii) classical aspects of Lorentz-breaking field theory models including typical forms of Lorentz-breaking additive terms, wave propagation in Lorentz-breaking theories, and mechanisms for breaking the Lorentz symmetry; (iii) quantum corrections in Lorentz-breaking theories, especially the possibilities for perturbation generating the most interesting Lorentz-breaking terms; (iv) correspondence between non-commutative field theories and Lorentz symmetry breaking; (v) supersymmetric Lorentz-breaking theories; and (vi) Lorentz symmetry breaking in a curved space-time. We close the book with the review of experimental studies of Lorentz symmetry breaking. The importance and relevance of these topics are explained, first, by studies of limits of applicability of the Lorentz symmetry, second, by searches of the possible extensions of the standard model, including the Lorentz-breaking ones, and need to study their properties, third, by the relation between Lorentz symmetry breaking with string theory, fourth, by the problem of formulating a consistent quantum gravity theory, so that various modified gravity models are to be examined.
Choose an application
Relativity (Physics) --- Relativistic mechanics --- Lorentz transformations
Choose an application
Cosmology --- Geometry, Differential --- Lorentz transformations --- Mathematical models
Choose an application
"The Lorentz gas is one of the simplest and most widely-studied models for particle transport in matter. It describes a cloud of non-interacting gas particles in an infinitely extended array of identical spherical scatterers. The model was introduced by Lorentz in 1905 who, following the pioneering ideas of Maxwell and Boltzmann, postulated that in the limit of low scatterer density, the macroscopic transport properties of the model should be governed by a linear Boltzmann equation. The linear Boltzmann equation has since proved a useful tool in the description of various phenomena, including semiconductor physics and radiative transfer. A rigorous derivation of the linear Boltzmann equation from the underlying particle dynamics was given, for random scatterer configurations, in three seminal papers by Gallavotti, Spohn and Boldrighini-Bunimovich-Sinai. The objective of the present study is to develop an approach for a large class of deterministic scatterer configurations, including various types of quasicrystals. We prove the convergence of the particle dynamics to transport processes that are in general (depending on the scatterer configuration) not described by the linear Boltzmann equation. This was previously understood only in the case of the periodic Lorentz gas through work of Caglioti-Golse and Marklof-Strombergsson. Our results extend beyond the classical Lorentz gas with hard sphere scatterers, and in particular hold for general classes of spherically symmetric finite-range potentials. We employ a rescaling technique that randomises the point configuration given by the scatterers' centers. The limiting transport process is then expressed in terms of a point process that arises as the limit of the randomised point configuration under a certain volume-preserving one-parameter linear group action"--
Choose an application
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory.There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups
Choose an application
Listing 1 - 10 of 23 | << page >> |
Sort by
|