Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Decades of research have identified a role for dopamine neurotransmission in prefrontal cortical function and flexible cognition. Abnormal dopamine neurotransmission underlies many cases of cognitive dysfunction. New techniques using optogenetics have allowed for ever more precise functional segregation of areas within the prefrontal cortex, which underlie separate cognitive functions. Learning theory predictions have provided a very useful framework for interpreting the neural activity of dopamine neurons, yet even dopamine neurons present a range of responses, from salience to prediction error signaling. The functions of areas like the Lateral Habenula have been recently described, and its role, presumed to be substantial, is largely unknown. Many other neural systems interact with the dopamine system, like cortical GABAergic interneurons, making it critical to understand those systems and their interactions with dopamine in order to fully appreciate dopamine's role in flexible behavior. Advances in human clinical research, like exome sequencing, are driving experimental hypotheses which will lead to fruitful new research directions, but how do (or should?) these clinical findings inform basic research? Following new information from these techniques, we may begin to develop a fresh understanding of human disease states which will inform novel treatment possibilities. However, we need an operational framework with which to interpret these new findings. Therefore, the purpose of this Research Topic is to integrate what we know of dopamine, the prefrontal cortex and flexible behavior into a clear framework, which will illuminate clear, testable directions for future research.
behavioral flexibility --- Dopamine --- medial prefrontal cortex (mPFC) --- Attentional set-shifting --- basal forebrain --- anterior cingulate cortex (ACC) --- endocannabinoid system --- lateral habenula (LHb) --- Locus coeruleus (LC) --- motivational salience
Choose an application
Decades of research have identified a role for dopamine neurotransmission in prefrontal cortical function and flexible cognition. Abnormal dopamine neurotransmission underlies many cases of cognitive dysfunction. New techniques using optogenetics have allowed for ever more precise functional segregation of areas within the prefrontal cortex, which underlie separate cognitive functions. Learning theory predictions have provided a very useful framework for interpreting the neural activity of dopamine neurons, yet even dopamine neurons present a range of responses, from salience to prediction error signaling. The functions of areas like the Lateral Habenula have been recently described, and its role, presumed to be substantial, is largely unknown. Many other neural systems interact with the dopamine system, like cortical GABAergic interneurons, making it critical to understand those systems and their interactions with dopamine in order to fully appreciate dopamine's role in flexible behavior. Advances in human clinical research, like exome sequencing, are driving experimental hypotheses which will lead to fruitful new research directions, but how do (or should?) these clinical findings inform basic research? Following new information from these techniques, we may begin to develop a fresh understanding of human disease states which will inform novel treatment possibilities. However, we need an operational framework with which to interpret these new findings. Therefore, the purpose of this Research Topic is to integrate what we know of dopamine, the prefrontal cortex and flexible behavior into a clear framework, which will illuminate clear, testable directions for future research.
behavioral flexibility --- Dopamine --- medial prefrontal cortex (mPFC) --- Attentional set-shifting --- basal forebrain --- anterior cingulate cortex (ACC) --- endocannabinoid system --- lateral habenula (LHb) --- Locus coeruleus (LC) --- motivational salience
Choose an application
Decades of research have identified a role for dopamine neurotransmission in prefrontal cortical function and flexible cognition. Abnormal dopamine neurotransmission underlies many cases of cognitive dysfunction. New techniques using optogenetics have allowed for ever more precise functional segregation of areas within the prefrontal cortex, which underlie separate cognitive functions. Learning theory predictions have provided a very useful framework for interpreting the neural activity of dopamine neurons, yet even dopamine neurons present a range of responses, from salience to prediction error signaling. The functions of areas like the Lateral Habenula have been recently described, and its role, presumed to be substantial, is largely unknown. Many other neural systems interact with the dopamine system, like cortical GABAergic interneurons, making it critical to understand those systems and their interactions with dopamine in order to fully appreciate dopamine's role in flexible behavior. Advances in human clinical research, like exome sequencing, are driving experimental hypotheses which will lead to fruitful new research directions, but how do (or should?) these clinical findings inform basic research? Following new information from these techniques, we may begin to develop a fresh understanding of human disease states which will inform novel treatment possibilities. However, we need an operational framework with which to interpret these new findings. Therefore, the purpose of this Research Topic is to integrate what we know of dopamine, the prefrontal cortex and flexible behavior into a clear framework, which will illuminate clear, testable directions for future research.
behavioral flexibility --- Dopamine --- medial prefrontal cortex (mPFC) --- Attentional set-shifting --- basal forebrain --- anterior cingulate cortex (ACC) --- endocannabinoid system --- lateral habenula (LHb) --- Locus coeruleus (LC) --- motivational salience
Choose an application
Un tiers de la vie humaine est consacré au sommeil qui est un état fondamental présent dans tout le règne animal. De plus en plus d’articles scientifiques montrent l’importance de la qualité du sommeil sur la santé et entre autres sur l’évolution de la cognition au cours du vieillissement. De nombreuses études ont déjà été menées sur des rats, des souris, des singes ainsi que sur des chats concernant la maladie d’Alzheimer. Cette maladie pourrait peut-être être décelée via l'étude de la dégénérescence du locus cœruleus. Il a pu être noté que ce noyau a de nombreuses fonctions dont la régulation du sommeil. Malheureusement, le lien entre les caractéristiques structurelles et fonctionnelles du locus cœruleus et de son influence sur la qualité du sommeil chez l’homme reste vague. C’est pourquoi il serait nécessaire de mieux comprendre dans un premier temps les liens entre le locus cœruleus et le sommeil. Dans le cadre de ce travail, des personnes jeunes de 18 à 35 ans (n=32) et âgées de 50 à 70 ans (n=19) ont été recrutées pour combler ce manque. Dans un premier temps, elles ont été soumises à des enregistrements des ondes cérébrales lors du sommeil pour caractériser leur sommeil puis, dans un second temps, elles ont subi des examens par imagerie par résonance magnétique (IRM) 7 Tesla (7T) à haute résolution tout en exécutant diverses tâches connues pour recruter le locus cœruleus. Le mémoire présenté ayant comme objectif de mettre en évidence les potentiels liens entre le sommeil et l’activité du locus cœruleus lors de la réalisation de la tâche auditive (Oddball). L’activité du Locus cœruleus semble avoir un lien significatif avec la puissance thêta lors du sommeil REM en interaction avec l’âge. La puissante theta lors du sommeil REM diminue si l’activité du LC est plus importante à l’éveil chez les personnes âgées alors qu’elle pourrait augmenter chez les personnes jeunes. Ces résultats nous a permis de voir qu’il est préférable d’avoir un LC moins actifs pour produire plus d’ondes thêta au cours du sommeil REM qui permettrait alors de passer un meilleur sommeil.
Listing 1 - 4 of 4 |
Sort by
|