Narrow your search

Library

KU Leuven (4)

UCLouvain (2)

ULiège (2)

VUB (2)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UAntwerpen (1)

UCLL (1)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2019 (2)

2016 (1)

2008 (1)

1996 (1)

1984 (1)

Listing 1 - 6 of 6
Sort by
Characters of reductive groups over a finite field
Author:
ISBN: 0691083509 0691083517 1400881773 9780691083513 9780691083506 Year: 1984 Volume: 107 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a classification of all (complex)irreducible representations of a reductive group withconnected centre, over a finite field. To achieve this,the author uses etale intersection cohomology, anddetailed information on representations of Weylgroups.

Keywords

512 --- Characters of groups --- Finite fields (Algebra) --- Finite groups --- Groups, Finite --- Group theory --- Modules (Algebra) --- Modular fields (Algebra) --- Algebra, Abstract --- Algebraic fields --- Galois theory --- Characters, Group --- Group characters --- Groups, Characters of --- Representations of groups --- Rings (Algebra) --- Algebra --- 512 Algebra --- Finite groups. --- Characters of groups. --- Addition. --- Algebra representation. --- Algebraic closure. --- Algebraic group. --- Algebraic variety. --- Algebraically closed field. --- Bijection. --- Borel subgroup. --- Cartan subalgebra. --- Character table. --- Character theory. --- Characteristic function (probability theory). --- Characteristic polynomial. --- Class function (algebra). --- Classical group. --- Coefficient. --- Cohomology with compact support. --- Cohomology. --- Combination. --- Complex number. --- Computation. --- Conjugacy class. --- Connected component (graph theory). --- Coxeter group. --- Cyclic group. --- Cyclotomic polynomial. --- David Kazhdan. --- Dense set. --- Derived category. --- Diagram (category theory). --- Dimension. --- Direct sum. --- Disjoint sets. --- Disjoint union. --- E6 (mathematics). --- Eigenvalues and eigenvectors. --- Endomorphism. --- Equivalence class. --- Equivalence relation. --- Existential quantification. --- Explicit formula. --- Explicit formulae (L-function). --- Fiber bundle. --- Finite field. --- Finite group. --- Fourier transform. --- Green's function. --- Group (mathematics). --- Group action. --- Group representation. --- Harish-Chandra. --- Hecke algebra. --- Identity element. --- Integer. --- Irreducible representation. --- Isomorphism class. --- Jordan decomposition. --- Line bundle. --- Linear combination. --- Local system. --- Mathematical induction. --- Maximal torus. --- Module (mathematics). --- Monodromy. --- Morphism. --- Orthonormal basis. --- P-adic number. --- Parametrization. --- Parity (mathematics). --- Partially ordered set. --- Perverse sheaf. --- Pointwise. --- Polynomial. --- Quantity. --- Rational point. --- Reductive group. --- Ree group. --- Schubert variety. --- Scientific notation. --- Semisimple Lie algebra. --- Sheaf (mathematics). --- Simple group. --- Simple module. --- Special case. --- Standard basis. --- Subset. --- Subtraction. --- Summation. --- Surjective function. --- Symmetric group. --- Tensor product. --- Theorem. --- Two-dimensional space. --- Unipotent representation. --- Vector bundle. --- Vector space. --- Verma module. --- Weil conjecture. --- Weyl group. --- Zariski topology.

Period spaces for p-divisible groups
Authors: ---
ISBN: 0691027811 1400882605 9780691027814 Year: 1996 Volume: 141 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.

Keywords

p-adic groups --- p-divisible groups --- Moduli theory --- 512.7 --- Theory of moduli --- Analytic spaces --- Functions of several complex variables --- Geometry, Algebraic --- Groups, p-divisible --- Group schemes (Mathematics) --- Groups, p-adic --- Group theory --- Algebraic geometry. Commutative rings and algebras --- 512.7 Algebraic geometry. Commutative rings and algebras --- p-divisible groups. --- Moduli theory. --- p-adic groups. --- Abelian variety. --- Addition. --- Alexander Grothendieck. --- Algebraic closure. --- Algebraic number field. --- Algebraic space. --- Algebraically closed field. --- Artinian ring. --- Automorphism. --- Base change. --- Basis (linear algebra). --- Big O notation. --- Bilinear form. --- Canonical map. --- Cohomology. --- Cokernel. --- Commutative algebra. --- Commutative ring. --- Complex multiplication. --- Conjecture. --- Covering space. --- Degenerate bilinear form. --- Diagram (category theory). --- Dimension (vector space). --- Dimension. --- Duality (mathematics). --- Elementary function. --- Epimorphism. --- Equation. --- Existential quantification. --- Fiber bundle. --- Field of fractions. --- Finite field. --- Formal scheme. --- Functor. --- Galois group. --- General linear group. --- Geometric invariant theory. --- Hensel's lemma. --- Homomorphism. --- Initial and terminal objects. --- Inner automorphism. --- Integral domain. --- Irreducible component. --- Isogeny. --- Isomorphism class. --- Linear algebra. --- Linear algebraic group. --- Local ring. --- Local system. --- Mathematical induction. --- Maximal ideal. --- Maximal torus. --- Module (mathematics). --- Moduli space. --- Monomorphism. --- Morita equivalence. --- Morphism. --- Multiplicative group. --- Noetherian ring. --- Open set. --- Orthogonal basis. --- Orthogonal complement. --- Orthonormal basis. --- P-adic number. --- Parity (mathematics). --- Period mapping. --- Prime element. --- Prime number. --- Projective line. --- Projective space. --- Quaternion algebra. --- Reductive group. --- Residue field. --- Rigid analytic space. --- Semisimple algebra. --- Sheaf (mathematics). --- Shimura variety. --- Special case. --- Subalgebra. --- Subgroup. --- Subset. --- Summation. --- Supersingular elliptic curve. --- Support (mathematics). --- Surjective function. --- Symmetric bilinear form. --- Symmetric space. --- Tate module. --- Tensor algebra. --- Tensor product. --- Theorem. --- Topological ring. --- Topology. --- Torsor (algebraic geometry). --- Uniformization theorem. --- Uniformization. --- Unitary group. --- Weil group. --- Zariski topology.


Book
Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169)
Authors: ---
ISBN: 0691138214 1400837111 0691138222 9780691138220 9781400837113 9780691138213 Year: 2008 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

Keywords

Hodge theory. --- Logarithms. --- Logs (Logarithms) --- Algebra --- Complex manifolds --- Differentiable manifolds --- Geometry, Algebraic --- Homology theory --- Algebraic group. --- Algebraic variety. --- Analytic manifold. --- Analytic space. --- Annulus (mathematics). --- Arithmetic group. --- Atlas (topology). --- Canonical map. --- Classifying space. --- Coefficient. --- Cohomology. --- Compactification (mathematics). --- Complex manifold. --- Complex number. --- Congruence subgroup. --- Conjecture. --- Connected component (graph theory). --- Continuous function. --- Convex cone. --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential form. --- Direct image functor. --- Divisor. --- Elliptic curve. --- Equivalence class. --- Existential quantification. --- Finite set. --- Functor. --- Geometry. --- Hodge structure. --- Homeomorphism. --- Homomorphism. --- Inverse function. --- Iwasawa decomposition. --- Local homeomorphism. --- Local ring. --- Local system. --- Logarithmic. --- Maximal compact subgroup. --- Modular curve. --- Modular form. --- Moduli space. --- Monodromy. --- Monoid. --- Morphism. --- Natural number. --- Nilpotent orbit. --- Nilpotent. --- Open problem. --- Open set. --- P-adic Hodge theory. --- P-adic number. --- Point at infinity. --- Proper morphism. --- Pullback (category theory). --- Quotient space (topology). --- Rational number. --- Relative interior. --- Ring (mathematics). --- Ring homomorphism. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Smooth morphism. --- Special case. --- Strong topology. --- Subgroup. --- Subobject. --- Subset. --- Surjective function. --- Tangent bundle. --- Taylor series. --- Theorem. --- Topological space. --- Topology. --- Transversality (mathematics). --- Two-dimensional space. --- Vector bundle. --- Vector space. --- Weak topology.


Book
Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin-Selberg L-Functions : (AMS-203)
Authors: ---
ISBN: 0691197938 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel-Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin-Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations.This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups.

Keywords

Shimura varieties. --- Cohomology operations. --- Number theory. --- Arithmetic groups. --- L-functions. --- Functions, L --- -Number theory --- Group theory --- Number study --- Numbers, Theory of --- Algebra --- Operations (Algebraic topology) --- Algebraic topology --- Varieties, Shimura --- Arithmetical algebraic geometry --- Addition. --- Adele ring. --- Algebraic group. --- Algebraic number theory. --- Arithmetic group. --- Automorphic form. --- Base change. --- Basis (linear algebra). --- Bearing (navigation). --- Borel subgroup. --- Calculation. --- Category of groups. --- Coefficient. --- Cohomology. --- Combination. --- Commutative ring. --- Compact group. --- Computation. --- Conjecture. --- Constant term. --- Corollary. --- Covering space. --- Critical value. --- Diagram (category theory). --- Dimension. --- Dirichlet character. --- Discrete series representation. --- Discrete spectrum. --- Eigenvalues and eigenvectors. --- Eisenstein series. --- Elaboration. --- Embedding. --- Euler product. --- Field extension. --- Field of fractions. --- Free module. --- Freydoon Shahidi. --- Function field. --- Functor. --- Galois group. --- Ground field. --- Group (mathematics). --- Group scheme. --- Harish-Chandra. --- Hecke L-function. --- Hecke character. --- Hecke operator. --- Hereditary property. --- Induced representation. --- Irreducible representation. --- K0. --- L-function. --- Langlands dual group. --- Level structure. --- Lie algebra cohomology. --- Lie algebra. --- Lie group. --- Linear combination. --- Linear map. --- Local system. --- Maximal torus. --- Modular form. --- Modular symbol. --- Module (mathematics). --- Monograph. --- N0. --- National Science Foundation. --- Natural number. --- Natural transformation. --- Nilradical. --- Permutation. --- Prime number. --- Quantity. --- Rational number. --- Reductive group. --- Requirement. --- Ring of integers. --- Root of unity. --- SL2(R). --- Scalar (physics). --- Sheaf (mathematics). --- Special case. --- Spectral sequence. --- Standard L-function. --- Subgroup. --- Subset. --- Summation. --- Tensor product. --- Theorem. --- Theory. --- Triangular matrix. --- Triviality (mathematics). --- Two-dimensional space. --- Unitary group. --- Vector space. --- W0. --- Weyl group.


Book
Arithmetic and Geometry : Ten Years in Alpbach (AMS-202)
Authors: ---
ISBN: 0691197547 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures-which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria-provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach.The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces.The second course, taught by Umberto Zannier, addresses the famous Pell equation-not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians.The third course, taught by Shou-Wu Zhang, originates in the Chowla-Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross-Zagier formula on Shimura curves and verify the Colmez conjecture on average.

Keywords

Arithmetical algebraic geometry. --- Algebraic geometry, Arithmetical --- Arithmetic algebraic geometry --- Diophantine geometry --- Geometry, Arithmetical algebraic --- Geometry, Diophantine --- Number theory --- Abelian variety. --- Algebraic geometry. --- Algebraic independence. --- Algebraic space. --- Analytic number theory. --- Arbitrarily large. --- Automorphic form. --- Automorphism. --- Base change. --- Big O notation. --- Class number formula. --- Cohomology. --- Complex multiplication. --- Computation. --- Conjecture. --- Conjugacy class. --- Continued fraction. --- Cusp form. --- Diagram (category theory). --- Dimension. --- Diophantine equation. --- Diophantine geometry. --- Discriminant. --- Divisible group. --- Double coset. --- Eisenstein series. --- Endomorphism. --- Equation. --- Existential quantification. --- Exponential map (Riemannian geometry). --- Fiber bundle. --- Floor and ceiling functions. --- Formal group. --- Formal power series. --- Formal scheme. --- Fundamental group. --- Geometric Langlands correspondence. --- Geometry. --- Heegner point. --- Hodge structure. --- Hodge theory. --- Homomorphism. --- I0. --- Integer. --- Intersection number. --- Irreducible component. --- Isogeny. --- Isomorphism class. --- Jacobian variety. --- L-function. --- Langlands dual group. --- Laurent series. --- Linear combination. --- Local system. --- Logarithmic derivative. --- Logarithmic form. --- Mathematics. --- Modular form. --- Moduli space. --- Monotonic function. --- Natural topology. --- P-adic analysis. --- P-adic number. --- Pell's equation. --- Perverse sheaf. --- Polylogarithm. --- Polynomial. --- Power series. --- Presheaf (category theory). --- Prime number. --- Projective space. --- Quaternion algebra. --- Rational point. --- Real number. --- Reductive group. --- Rigid analytic space. --- Roth's theorem. --- Series expansion. --- Shafarevich conjecture. --- Sheaf (mathematics). --- Shimura variety. --- Siegel zero. --- Special case. --- Stack (mathematics). --- Subset. --- Summation. --- Szpiro's conjecture. --- Tate conjecture. --- Tate module. --- Taylor series. --- Theorem. --- Theta function. --- Topological ring. --- Topology. --- Torsor (algebraic geometry). --- Upper and lower bounds. --- Vector bundle. --- Weil group. --- Witt vector. --- Zariski topology.


Book
Rigid Local Systems. (AM-139), Volume 139
Author:
ISBN: 1400882591 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.

Keywords

Differential equations --- Hypergeometric functions. --- Sheaf theory. --- Numerical solutions. --- Additive group. --- Alexander Grothendieck. --- Algebraic closure. --- Algebraic differential equation. --- Algebraically closed field. --- Algorithm. --- Analytic continuation. --- Automorphism. --- Axiom of choice. --- Bernhard Riemann. --- Big O notation. --- Calculation. --- Carlos Simpson. --- Coefficient. --- Cohomology. --- Commutator. --- Compactification (mathematics). --- Comparison theorem. --- Complex analytic space. --- Complex conjugate. --- Complex manifold. --- Conjecture. --- Conjugacy class. --- Convolution. --- Corollary. --- Cube root. --- Cusp form. --- De Rham cohomology. --- Differential equation. --- Dimension. --- Dimensional analysis. --- Discrete valuation ring. --- Disjoint union. --- Divisor. --- Duality (mathematics). --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic curve. --- Equation. --- Equivalence of categories. --- Exact sequence. --- Existential quantification. --- Finite field. --- Finite set. --- Fourier transform. --- Functor. --- Fundamental group. --- Generic point. --- Ground field. --- Hodge structure. --- Hypergeometric function. --- Integer. --- Invertible matrix. --- Isomorphism class. --- Jordan normal form. --- Level of measurement. --- Linear differential equation. --- Local system. --- Mathematical induction. --- Mathematics. --- Matrix (mathematics). --- Monodromy. --- Monomial. --- Morphism. --- Natural filtration. --- Parameter. --- Parity (mathematics). --- Perfect field. --- Perverse sheaf. --- Polynomial. --- Prime number. --- Projective representation. --- Projective space. --- Pullback (category theory). --- Pullback. --- Rational function. --- Regular singular point. --- Relative dimension. --- Residue field. --- Ring of integers. --- Root of unity. --- Sequence. --- Sesquilinear form. --- Set (mathematics). --- Sheaf (mathematics). --- Six operations. --- Special case. --- Subgroup. --- Subobject. --- Subring. --- Suggestion. --- Summation. --- Tensor product. --- Theorem. --- Theory. --- Topology. --- Triangular matrix. --- Trivial representation. --- Vector space. --- Zariski topology.

Listing 1 - 6 of 6
Sort by