Narrow your search

Library

ULiège (4)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (1)

1999 (1)

1997 (1)

Listing 1 - 6 of 6
Sort by

Book
Standard Guidelines for the Design and Installation of Pile Foundations (ASCE 20-96)
Authors: ---
ISBN: 0784470219 Year: 1997 Publisher: New York : ASCE,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Standard Guidelines for the Design and Installation of Pile Foundations provides a guideline for an engineering approach to the design and subsequent installation of pile foundations. The purpose is to furnish a rational basis for this process, taking into account published model building codes and general standards of practice. Topics include: administrative requirements; pile shaft strength requirements: soil–pile interface strength requirements and capacity; design loads; design stresses; construction and layout guidelines for pile design; and installation guidelines for pile construction. This Standard includes information on applicable standards from ASTM, AWPA, and ACI, as well as an appendix on partial factors of safety.


Book
Automated People Mover Standards, Part 2 (ASCE 21-98)
Authors: ---
ISBN: 0784470553 Year: 1999 Publisher: Reston, Virginia : American Society of Civil Engineers,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Automated People Mover Standards establishes the minimum requirements for the design, construction, operation, and maintenance of an automated people mover (APM) system. An APM is defined as a guided transit mode with fully automated operation, featuring vehicles that operate on guideways with exclusive right-of-way. Collectively, this three-volume standard will assist the industry and public by expediting the approval and release process and facilitating the use of an APM system. Part 2 provides general information on vehicles and propulsion and braking systems (PBS). Topics dedicated to vehicles include vehicle capacity and load, structural design, coupling, fire protection, and electrical systems. PBS topics include methodology, functions, component design and testing.


Book
Rain Loads : Guide to the Rain Load Provisions of ASCE 7
Authors: --- ---
ISBN: 0784482764 Year: 2020 Publisher: Reston, Virginia : ASCE Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rain Loads: Guide to the Rain Load Provision of ASCE 7-16 provides the practicing structural engineer with a detailed description of the rain load provisions of Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE 7-16. Authors O’Rourke and Lewis discuss the key parameters that underpin the provisions and illustrate the application of those provisions. Through more than 35 examples, the correct applications of the rain load provisions are illustrated.Some roofs are more susceptible than others to rain load problems. In the six chapters, the authors provide a detailed discussion of the rain load hazard; determination of drainage area; head-flow relationships and the associated types of flow; simplified conservative rain load procedures and limits that yield more accurate load estimates; and ponding loads.When used with the standard, Rain Loads assists engineers in addressing nonroutine rain loading issues that are not explicitly covered in ASCE 7-16.Rain Loads is an essential supplement to ASCE/SEI Standard 7-16 for all structural engineers, architects, construction professionals, and building officials throughout the United States.


Book
Advanced Composites : From Materials Characterization to Structural Application
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.

Keywords

Technology: general issues --- steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a


Book
Advanced Composites : From Materials Characterization to Structural Application
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.

Keywords

Technology: general issues --- steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a


Book
Advanced Composites : From Materials Characterization to Structural Application
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.

Keywords

steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a

Listing 1 - 6 of 6
Sort by