Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Choose an application
Liquid membranes --- Chemistry --- Physical Sciences & Mathematics --- Physical & Theoretical Chemistry --- Congresses --- Congresses.
Choose an application
Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmen
Choose an application
This product provides comprehensive information on liquid membrane separations, presenting the principles and applications of a variety of liquid membrane separation processes. A critical analysis of new technologies and their theoretical background is presented, as well as directions for future development.- Provides comprehensive knowledge-based information on the principles and applications of a variety of liquid membrane separation processes. - Contains a critical analysis of new technologies published in the last 15 years.
Sewage --- Membrane separation. --- Liquid membranes. --- Purification --- Reverse osmosis process. --- Membranes (Technology) --- Filtration, Membrane --- Membrane filtration --- Separation, Membrane --- Separation (Technology) --- Reverse osmosis process (Sewage purification) --- Reverse osmosis --- Chemistry --- Chemical Engineering
Choose an application
Through reading this book, you will obtain information on: (1) the main problems in air separation and natural gas treatment by membrane separation and how to solve them; (2) processes involving membranes and new membrane materials for the more economical utilization of bio-resources; (3) energy selection and membrane development for more expedient and stable harnessing of the natural osmosis phenomenon; (4) many excellent contributions about catalytic membrane bioreactors; (5) how to fine-tune the arrangement of aquaporins (i.e., proteins identified in biological cells) to achieve superior water treatment efficiency.
n/a --- membrane --- draw solutes --- regeneration --- steam explosion --- wastewater treatment --- lignin --- hydrogen --- supported ionic liquid membranes --- chlorine resistance --- photocatalytic membrane --- thin-film composite --- photocatalytic membrane reactors --- single-sites --- pore modification --- polyimide --- separation --- dynamic membrane filtration --- microalgae --- structural stability --- energy --- fine chemistry --- pre-reforming --- costs --- fractionation --- carbon dioxide --- glucose --- alkanes --- immobilization --- biomimetic --- aquaporins --- nanofiltration --- interfacial polymerization --- cell disruption --- gas separation --- steam reforming --- plasticization --- xylose --- forward osmosis --- zeolite membrane --- membrane separation --- dopamine
Choose an application
Mixed matrix membranes (MMMs) have attracted a large amount of interest in research laboratories worldwide in recent decades, motivated by the gap between a growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications to solve environmental and health challenges of the society of 21st century.
modeling --- neural tissue regeneration --- membrane fabrication --- nanoporous polybenzimidazole membranes --- photo-assisted polymerization --- poly (?-caprolactone) --- supported ionic liquid membranes --- CH4 selective membranes --- flat-sheet membrane --- hollow fiber membrane --- ion exchange capacity --- reduced graphene oxide --- polymer of intrinsic microporosity --- CH4 solubility --- RHO --- temperature --- porous nanoparticles --- protic imidazolium ionic liquids --- POSS® --- mixed matrix membranes --- characterization techniques --- membrane modification --- in vitro human neural models --- small-pore zeolites (CHA --- Poly(trimethylsilyl-1-propyne) (PTMSP) --- LTA) --- filler dispersion --- gas separation --- water vapor --- gas separation membrane --- CO2 separation --- nanocomposite membranes --- hydrolytic bulk degradation mechanism --- PVA --- compatibility --- borane
Choose an application
Water is a vital element for life and the environment. Water pollution has been documented as a contributor to a wide range of health problems. In recent years, the water quality levels have suffered great deterioration because of rapid social and economic development and because it is used to “dump” a wide range of pollutants.This book entitled “Membranes for Water and Wastewater Treatment” contains featured research papers dealing with recent developments and advances in all aspects related to membranes for water and wastewater treatment: membrane processes, combined processes (including one membrane step), modified membranes, new materials, and the possibility to reduce fouling and to improve the efficiency of enhanced processes. The papers compiled in this Special Issue can be read as a response to the current needs and challenges in membrane development for water and wastewater treatment.Half of the research articles correspond to concrete and practical applications of the use of membrane processes in different fields of the industry, with the aim of treating and conditioning water and wastewater. The studies reveal the treatment of industrial streams, mining, recycled paper industry, olive mill, urban wastewater, etc. Another important percentage of studies are related to membrane modification processes, with the aim of obtaining new materials with better performance in the separation processes, thus describing the use of membranes modified with chitosan, nanoparticles, and other organic compounds. This field also includes studies related to fouling and its modeling.
Technology: general issues --- aquaporin --- forward osmosis (FO) --- membrane --- scaling --- calcium --- post-treatment --- nanofiltration --- calcium-carboxyl intra-bridging --- water purification --- desalination --- ultrafiltration --- membrane fouling --- fouling model --- surface water --- coagulation --- backwash --- polyamide membrane --- carbon nitride --- seawater desalination --- mixed matrix membranes --- thin film composite --- diffusion dialysis --- anion exchange membrane --- acid recovery --- paper mill treated effluent --- optimization --- fouling --- DoE --- Taguchi method --- fouling development model --- filtration law --- pore blocking --- multiple linear regression --- statistical test --- WWTP --- renovation and upgrading --- ultrafiltration membrane --- net present value --- biofouling --- polyethersulfone --- chlorine --- membrane modification --- low-fouling surface --- anaerobic membrane bioreactor --- temperature --- membrane fouling behavior --- sludge flocs characteristics --- soluble microbial product --- extracellular polymeric substance --- DSPM model --- heavy metals --- total volume membrane charge density --- ceramic membrane --- membrane surface modification --- antifouling --- hydrophilicity --- mussel-inspired --- protein --- sulfonic cation-exchange membrane --- hydration number --- pulsed field gradient NMR --- diffusion coefficient --- ionic conductivity --- membrane module modeling --- calcium sulfate precipitation risk --- ionic rejection coefficients --- quorum sensing --- acyl homoserine lactone --- olive mill wastewater --- membrane separation process --- microfiltration --- reverse osmosis --- water recovery --- chitosan --- water content --- water permeability --- alkali treatment --- characterization --- dyes --- molecular structure --- physico-chemical properties --- filter water bag --- Dioscorea hispida --- starch --- forward osmosis membrane --- glutaraldehyde --- emergency --- cobalt(II) --- supported liquid membranes --- ultrasound --- D2EHPA --- counter-transport --- transport parameters --- modeling --- thiocyanate --- wastewater treatment --- process design --- antibiotics --- antibiotic resistance genes --- viral genomes --- wastewater effluents --- occurrence --- pilot-scale treatment --- selective separation --- ion-exchange resin --- wafer-enhanced electrodeionization --- n/a
Choose an application
Water is a vital element for life and the environment. Water pollution has been documented as a contributor to a wide range of health problems. In recent years, the water quality levels have suffered great deterioration because of rapid social and economic development and because it is used to “dump” a wide range of pollutants.This book entitled “Membranes for Water and Wastewater Treatment” contains featured research papers dealing with recent developments and advances in all aspects related to membranes for water and wastewater treatment: membrane processes, combined processes (including one membrane step), modified membranes, new materials, and the possibility to reduce fouling and to improve the efficiency of enhanced processes. The papers compiled in this Special Issue can be read as a response to the current needs and challenges in membrane development for water and wastewater treatment.Half of the research articles correspond to concrete and practical applications of the use of membrane processes in different fields of the industry, with the aim of treating and conditioning water and wastewater. The studies reveal the treatment of industrial streams, mining, recycled paper industry, olive mill, urban wastewater, etc. Another important percentage of studies are related to membrane modification processes, with the aim of obtaining new materials with better performance in the separation processes, thus describing the use of membranes modified with chitosan, nanoparticles, and other organic compounds. This field also includes studies related to fouling and its modeling.
aquaporin --- forward osmosis (FO) --- membrane --- scaling --- calcium --- post-treatment --- nanofiltration --- calcium-carboxyl intra-bridging --- water purification --- desalination --- ultrafiltration --- membrane fouling --- fouling model --- surface water --- coagulation --- backwash --- polyamide membrane --- carbon nitride --- seawater desalination --- mixed matrix membranes --- thin film composite --- diffusion dialysis --- anion exchange membrane --- acid recovery --- paper mill treated effluent --- optimization --- fouling --- DoE --- Taguchi method --- fouling development model --- filtration law --- pore blocking --- multiple linear regression --- statistical test --- WWTP --- renovation and upgrading --- ultrafiltration membrane --- net present value --- biofouling --- polyethersulfone --- chlorine --- membrane modification --- low-fouling surface --- anaerobic membrane bioreactor --- temperature --- membrane fouling behavior --- sludge flocs characteristics --- soluble microbial product --- extracellular polymeric substance --- DSPM model --- heavy metals --- total volume membrane charge density --- ceramic membrane --- membrane surface modification --- antifouling --- hydrophilicity --- mussel-inspired --- protein --- sulfonic cation-exchange membrane --- hydration number --- pulsed field gradient NMR --- diffusion coefficient --- ionic conductivity --- membrane module modeling --- calcium sulfate precipitation risk --- ionic rejection coefficients --- quorum sensing --- acyl homoserine lactone --- olive mill wastewater --- membrane separation process --- microfiltration --- reverse osmosis --- water recovery --- chitosan --- water content --- water permeability --- alkali treatment --- characterization --- dyes --- molecular structure --- physico-chemical properties --- filter water bag --- Dioscorea hispida --- starch --- forward osmosis membrane --- glutaraldehyde --- emergency --- cobalt(II) --- supported liquid membranes --- ultrasound --- D2EHPA --- counter-transport --- transport parameters --- modeling --- thiocyanate --- wastewater treatment --- process design --- antibiotics --- antibiotic resistance genes --- viral genomes --- wastewater effluents --- occurrence --- pilot-scale treatment --- selective separation --- ion-exchange resin --- wafer-enhanced electrodeionization --- n/a
Choose an application
Water is a vital element for life and the environment. Water pollution has been documented as a contributor to a wide range of health problems. In recent years, the water quality levels have suffered great deterioration because of rapid social and economic development and because it is used to “dump” a wide range of pollutants.This book entitled “Membranes for Water and Wastewater Treatment” contains featured research papers dealing with recent developments and advances in all aspects related to membranes for water and wastewater treatment: membrane processes, combined processes (including one membrane step), modified membranes, new materials, and the possibility to reduce fouling and to improve the efficiency of enhanced processes. The papers compiled in this Special Issue can be read as a response to the current needs and challenges in membrane development for water and wastewater treatment.Half of the research articles correspond to concrete and practical applications of the use of membrane processes in different fields of the industry, with the aim of treating and conditioning water and wastewater. The studies reveal the treatment of industrial streams, mining, recycled paper industry, olive mill, urban wastewater, etc. Another important percentage of studies are related to membrane modification processes, with the aim of obtaining new materials with better performance in the separation processes, thus describing the use of membranes modified with chitosan, nanoparticles, and other organic compounds. This field also includes studies related to fouling and its modeling.
Technology: general issues --- aquaporin --- forward osmosis (FO) --- membrane --- scaling --- calcium --- post-treatment --- nanofiltration --- calcium-carboxyl intra-bridging --- water purification --- desalination --- ultrafiltration --- membrane fouling --- fouling model --- surface water --- coagulation --- backwash --- polyamide membrane --- carbon nitride --- seawater desalination --- mixed matrix membranes --- thin film composite --- diffusion dialysis --- anion exchange membrane --- acid recovery --- paper mill treated effluent --- optimization --- fouling --- DoE --- Taguchi method --- fouling development model --- filtration law --- pore blocking --- multiple linear regression --- statistical test --- WWTP --- renovation and upgrading --- ultrafiltration membrane --- net present value --- biofouling --- polyethersulfone --- chlorine --- membrane modification --- low-fouling surface --- anaerobic membrane bioreactor --- temperature --- membrane fouling behavior --- sludge flocs characteristics --- soluble microbial product --- extracellular polymeric substance --- DSPM model --- heavy metals --- total volume membrane charge density --- ceramic membrane --- membrane surface modification --- antifouling --- hydrophilicity --- mussel-inspired --- protein --- sulfonic cation-exchange membrane --- hydration number --- pulsed field gradient NMR --- diffusion coefficient --- ionic conductivity --- membrane module modeling --- calcium sulfate precipitation risk --- ionic rejection coefficients --- quorum sensing --- acyl homoserine lactone --- olive mill wastewater --- membrane separation process --- microfiltration --- reverse osmosis --- water recovery --- chitosan --- water content --- water permeability --- alkali treatment --- characterization --- dyes --- molecular structure --- physico-chemical properties --- filter water bag --- Dioscorea hispida --- starch --- forward osmosis membrane --- glutaraldehyde --- emergency --- cobalt(II) --- supported liquid membranes --- ultrasound --- D2EHPA --- counter-transport --- transport parameters --- modeling --- thiocyanate --- wastewater treatment --- process design --- antibiotics --- antibiotic resistance genes --- viral genomes --- wastewater effluents --- occurrence --- pilot-scale treatment --- selective separation --- ion-exchange resin --- wafer-enhanced electrodeionization
Listing 1 - 9 of 9 |
Sort by
|