Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
Terpenoids --- Terpenoids --- bioconversion. --- bioconversion --- Pseudomonas --- Pseudomonas --- culture media --- culture media --- Spores --- Spores --- Cladosporium --- Cladosporium --- Penicillium --- Penicillium --- Aspergillus niger --- Aspergillus niger --- Flavour --- Flavour --- Limonene. --- Limonene --- Penicillium italicum --- Penicillium italicum --- Penicillium digitatum --- Penicillium digitatum --- Alpha-pinene --- Alpha-pinene
Choose an application
Materials play a very important role in the technological development of a society. As a consequence, the continuous demand for more advanced and sophisticated applications is closely linked to the availability of innovative materials. Although aspects related to the study, the synthesis and the applications of materials are of interdisciplinary interest, in the last few years, great attention has been paid to the development of advanced materials for environmental preservation and sustainable energy technologies, such as gaseous pollutant monitoring, waste water treatment, catalysis, carbon dioxide valorization, green fuel production, energy saving, water adsorption and clean technologies. This Special Issue aims at covering the current design, synthesis and characterization of innovative advanced materials, as well as novel nanotechnologies able to offer promising solutions to the these pressing themes.
Technology: general issues --- History of engineering & technology --- anaerobic digestion --- anchovies --- biorefinery --- circular economy --- d-limonene --- granular activated carbon --- inhibition --- orange peel waste (OPW) --- hydrothermal carbonization --- hydrochar --- 5-hydroxymethylfurfural (5-HMF) --- furfural (FU) --- levulinic acid (LA) --- nanomaterials --- MOS --- resistive sensor --- tin oxide --- fermentation --- diacetyl --- lithium chloride hydrate --- composite foam --- deliquescence --- thermochemical storage --- in situ characterization --- ionic liquids --- heat storage --- thermal stability --- HRMAS NMR --- FTIR --- zinc oxide --- gas sensor --- hexanal --- 1-pentanol --- 1-octen-3-ol --- MOX --- plasmonic nanoparticles --- silicon solar cell --- graphene --- short-circuit current density --- open-circuit voltage --- power conversion efficiency --- n/a
Choose an application
These days, massive consumer demands for short-term single-use plastic materials have produced huge plastic waste, which in turn has created tremendous environmental pollution. Biodegradable polymers or biopolymers can be used to develop alternatives to synthetic petroleum-based plastics. Different sources of biopolymers, like carbohydrates, proteins, and lipids, as well as biodegradable polymers such as polyesters, polyamides, polyurethanes, etc., have been utilized recently to make environmentally benign biodegradable plastic.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- pullulan/carrageenan --- CuSNP --- limonene --- composite film --- mechanical property --- antibacterial activity --- chitosan --- tannic acid --- titanium dioxide --- nanocomposite film --- mechanical properties --- antioxidant activity --- melanin --- carvacrol --- agricultural residues --- carboxymethyl cellulose --- bioactive films --- functional films --- antimicrobial activity --- long afterglow PP composites --- plasticizer --- thermal --- mechanical --- DNA films --- spin coating --- film uniformity --- solvent effect --- biobased materials --- biodegradable --- food packaging --- pectin film --- physicomechanical --- Salicornia ramosissima --- sustainability --- biopolymer --- nanocomposites --- shelf life --- antimicrobial --- flexible printed electronics --- flexible hybrid electronics --- biopolymer films --- renewable-based substrate --- screen-printing --- surface energy --- pullulan --- gelatin --- sodium alginate --- oil oxidation --- edible film --- grease packaging --- n/a --- curcumin --- diclofenac --- films --- biopolymers --- carrageenan/alginate/poloxamer --- wound healing --- carrageenalginate/poloxamer
Choose an application
Biocatalysis, the application of enzymes as catalysts for chemical synthesis, has become an increasingly valuable tool for the synthetic chemist. Enzymatic transformations carried out by enzymes or whole-cell catalysts are used for the production of a wide variety of compounds ranging from bulk to fine chemicals. The primary consideration for the incorporation of biotransformation in a synthetic sequence is regio- and stereocontrol that can be achieved with enzyme-catalyzed reactions. Biotransformations are thus becoming accepted as a method for generating optically pure compounds as well as for developing efficient routes to target compounds. This Special Issue aims to address the main applications of biocatalysts, isolated enzymes, and whole microorganisms in the synthesis of bioactive compounds and their precursors.
Research & information: general --- Biology, life sciences --- 8-hydroxydaidzein --- stable --- soluble --- anti-inflammation --- amylosucrase --- Deinococcus geothermalis --- coumarin --- biotransformation --- filamentous fungi --- selective hydroxylation --- bromination --- chlorination --- pharmaceuticals --- active agent synthesis --- biocatalysis --- haloperoxidase --- halogenase --- glycosyltransferase --- Glycine max (L.) Merr. --- HPLC/MS --- isoflavone aglycone-rich extract --- isoflavone α-glucoside --- alkene cleavage --- aryl alkenes --- basidiomycota --- carotene degradation --- dye-decolorizing peroxidase (DyP) --- manganese --- Komagataella pfaffii --- Pleurotus sapidus --- monoterpenes --- limonene --- glycerol --- mevalonate pathway --- reaction engineering --- bioprocess --- biocatalyst --- two-liquid phase fermentation --- in situ product removal --- lipase --- unsaturated fatty acid --- oxidative cleavage --- oxidation --- adaptation --- UV/NTG mutagenesis --- psychrotrophs --- terpenes
Choose an application
Biocatalysis, the application of enzymes as catalysts for chemical synthesis, has become an increasingly valuable tool for the synthetic chemist. Enzymatic transformations carried out by enzymes or whole-cell catalysts are used for the production of a wide variety of compounds ranging from bulk to fine chemicals. The primary consideration for the incorporation of biotransformation in a synthetic sequence is regio- and stereocontrol that can be achieved with enzyme-catalyzed reactions. Biotransformations are thus becoming accepted as a method for generating optically pure compounds as well as for developing efficient routes to target compounds. This Special Issue aims to address the main applications of biocatalysts, isolated enzymes, and whole microorganisms in the synthesis of bioactive compounds and their precursors.
8-hydroxydaidzein --- stable --- soluble --- anti-inflammation --- amylosucrase --- Deinococcus geothermalis --- coumarin --- biotransformation --- filamentous fungi --- selective hydroxylation --- bromination --- chlorination --- pharmaceuticals --- active agent synthesis --- biocatalysis --- haloperoxidase --- halogenase --- glycosyltransferase --- Glycine max (L.) Merr. --- HPLC/MS --- isoflavone aglycone-rich extract --- isoflavone α-glucoside --- alkene cleavage --- aryl alkenes --- basidiomycota --- carotene degradation --- dye-decolorizing peroxidase (DyP) --- manganese --- Komagataella pfaffii --- Pleurotus sapidus --- monoterpenes --- limonene --- glycerol --- mevalonate pathway --- reaction engineering --- bioprocess --- biocatalyst --- two-liquid phase fermentation --- in situ product removal --- lipase --- unsaturated fatty acid --- oxidative cleavage --- oxidation --- adaptation --- UV/NTG mutagenesis --- psychrotrophs --- terpenes
Choose an application
Biocatalysis, the application of enzymes as catalysts for chemical synthesis, has become an increasingly valuable tool for the synthetic chemist. Enzymatic transformations carried out by enzymes or whole-cell catalysts are used for the production of a wide variety of compounds ranging from bulk to fine chemicals. The primary consideration for the incorporation of biotransformation in a synthetic sequence is regio- and stereocontrol that can be achieved with enzyme-catalyzed reactions. Biotransformations are thus becoming accepted as a method for generating optically pure compounds as well as for developing efficient routes to target compounds. This Special Issue aims to address the main applications of biocatalysts, isolated enzymes, and whole microorganisms in the synthesis of bioactive compounds and their precursors.
Research & information: general --- Biology, life sciences --- 8-hydroxydaidzein --- stable --- soluble --- anti-inflammation --- amylosucrase --- Deinococcus geothermalis --- coumarin --- biotransformation --- filamentous fungi --- selective hydroxylation --- bromination --- chlorination --- pharmaceuticals --- active agent synthesis --- biocatalysis --- haloperoxidase --- halogenase --- glycosyltransferase --- Glycine max (L.) Merr. --- HPLC/MS --- isoflavone aglycone-rich extract --- isoflavone α-glucoside --- alkene cleavage --- aryl alkenes --- basidiomycota --- carotene degradation --- dye-decolorizing peroxidase (DyP) --- manganese --- Komagataella pfaffii --- Pleurotus sapidus --- monoterpenes --- limonene --- glycerol --- mevalonate pathway --- reaction engineering --- bioprocess --- biocatalyst --- two-liquid phase fermentation --- in situ product removal --- lipase --- unsaturated fatty acid --- oxidative cleavage --- oxidation --- adaptation --- UV/NTG mutagenesis --- psychrotrophs --- terpenes --- 8-hydroxydaidzein --- stable --- soluble --- anti-inflammation --- amylosucrase --- Deinococcus geothermalis --- coumarin --- biotransformation --- filamentous fungi --- selective hydroxylation --- bromination --- chlorination --- pharmaceuticals --- active agent synthesis --- biocatalysis --- haloperoxidase --- halogenase --- glycosyltransferase --- Glycine max (L.) Merr. --- HPLC/MS --- isoflavone aglycone-rich extract --- isoflavone α-glucoside --- alkene cleavage --- aryl alkenes --- basidiomycota --- carotene degradation --- dye-decolorizing peroxidase (DyP) --- manganese --- Komagataella pfaffii --- Pleurotus sapidus --- monoterpenes --- limonene --- glycerol --- mevalonate pathway --- reaction engineering --- bioprocess --- biocatalyst --- two-liquid phase fermentation --- in situ product removal --- lipase --- unsaturated fatty acid --- oxidative cleavage --- oxidation --- adaptation --- UV/NTG mutagenesis --- psychrotrophs --- terpenes
Choose an application
Essential oils (EOs) and microbial/plant-based volatile organic compounds (VOCs) are being used in an increasing number of sectors such as health, cosmetics, the food industry and, more recently, agronomy. In agronomy, they are employed as bio-herbicides and bio-pesticides due to their their insecticidal, antifungal, and bactericidal effects. Several EO-based bio-pesticides are already registered. Essential oils and other VOCs are 100% bio-based and present numerous additional advantages. They contain a great number of structurally diverse compounds that frequently act in synergy; they are thus less subject to resistance. As highly volatile compounds are found in EOs and VOCs, they typically cause no residue problems in food products or in soils. Indeed, the supply of EOs can be really challenging because they are frequently produced in restricted areas of the world with prices and chemical composition fluctuations. Besides, while the high volatility of EOs and VOCs is interesting for some specific applications, it can be a problem when developing a bio-pesticide with long lasting effects. Finally, EOs are frequently phytotoxic, which is perfect for herbicide formulations, but not for other applications. In both cases, the development of a proper formulation is essential. Owing to the current attraction for natural products, a better understanding of their modes of biological action is of importance for the development of new and optimal applications.
Research & information: general --- Biology, life sciences --- natural antimicrobials --- encapsulation --- shelf-life --- microbiological quality --- micelles --- plant-derived antimicrobial --- Enteric pathogens --- leafy greens --- cheese --- essential oils --- Escherichia coli --- Clostridium tyrobutyricum --- Penicillium verrucosum --- antimicrobial --- Elsholtzia ciliata --- Tribolium castaneum --- essential oil --- carvone --- limonene --- insecticidal activity --- synergistic effect --- starch films --- active food packaging films --- cinnamon oil emulsions --- Botrytis cinerea --- Zanthoxylum leprieurii --- Sitophilus granarius --- tridecan-2-one --- β-myrcene --- (E)-β-ocimene --- dendrolasin --- antioxidant --- anti-inflammatory --- insecticidal --- anti-plasmodial --- Côte d'Ivoire --- Staphylococcus aureus --- S. epidermidis --- carvacrol --- thymol --- eugenol --- benzalkonium chloride --- biofilms --- planktonic --- disinfection --- natural products --- Aphis nerii --- Coccinella septempunctata --- plant-based insecticide --- Oryzaephius surinamensis --- Rhyzopertha dominica --- Trogoderma granarium --- thyme --- edible films --- high pressure thermal treatment --- ultrasonication --- food safety --- essential oil composition --- sabinene --- citronellal --- Sitophilus oryzae --- marinating solution --- pork loin --- quality --- safety --- phytotoxicity --- mode of action --- biopesticides --- biocontrol --- antifungal --- antibacterial --- biopesticide --- insecticide --- eco-friendly --- stored product pest --- Allium sativum --- Gaultheria procumbens --- Mentha arvensis --- Eucalyptus dives --- controlled release --- biosourced --- surface response methodology --- sweet wormwood --- mulberry pyralid --- mulberry --- immunity --- reproductive system --- digestive system --- natural antimicrobials --- encapsulation --- shelf-life --- microbiological quality --- micelles --- plant-derived antimicrobial --- Enteric pathogens --- leafy greens --- cheese --- essential oils --- Escherichia coli --- Clostridium tyrobutyricum --- Penicillium verrucosum --- antimicrobial --- Elsholtzia ciliata --- Tribolium castaneum --- essential oil --- carvone --- limonene --- insecticidal activity --- synergistic effect --- starch films --- active food packaging films --- cinnamon oil emulsions --- Botrytis cinerea --- Zanthoxylum leprieurii --- Sitophilus granarius --- tridecan-2-one --- β-myrcene --- (E)-β-ocimene --- dendrolasin --- antioxidant --- anti-inflammatory --- insecticidal --- anti-plasmodial --- Côte d'Ivoire --- Staphylococcus aureus --- S. epidermidis --- carvacrol --- thymol --- eugenol --- benzalkonium chloride --- biofilms --- planktonic --- disinfection --- natural products --- Aphis nerii --- Coccinella septempunctata --- plant-based insecticide --- Oryzaephius surinamensis --- Rhyzopertha dominica --- Trogoderma granarium --- thyme --- edible films --- high pressure thermal treatment --- ultrasonication --- food safety --- essential oil composition --- sabinene --- citronellal --- Sitophilus oryzae --- marinating solution --- pork loin --- quality --- safety --- phytotoxicity --- mode of action --- biopesticides --- biocontrol --- antifungal --- antibacterial --- biopesticide --- insecticide --- eco-friendly --- stored product pest --- Allium sativum --- Gaultheria procumbens --- Mentha arvensis --- Eucalyptus dives --- controlled release --- biosourced --- surface response methodology --- sweet wormwood --- mulberry pyralid --- mulberry --- immunity --- reproductive system --- digestive system
Choose an application
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.
Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer-Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer-Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer-Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron-cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2-C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer-Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt-nickel nanoparticles --- cobalt-nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer-Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer-Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer-Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron-cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2-C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer-Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt-nickel nanoparticles --- cobalt-nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR
Choose an application
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.
Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys
Choose an application
Essential oils (EOs) and microbial/plant-based volatile organic compounds (VOCs) are being used in an increasing number of sectors such as health, cosmetics, the food industry and, more recently, agronomy. In agronomy, they are employed as bio-herbicides and bio-pesticides due to their their insecticidal, antifungal, and bactericidal effects. Several EO-based bio-pesticides are already registered. Essential oils and other VOCs are 100% bio-based and present numerous additional advantages. They contain a great number of structurally diverse compounds that frequently act in synergy; they are thus less subject to resistance. As highly volatile compounds are found in EOs and VOCs, they typically cause no residue problems in food products or in soils. Indeed, the supply of EOs can be really challenging because they are frequently produced in restricted areas of the world with prices and chemical composition fluctuations. Besides, while the high volatility of EOs and VOCs is interesting for some specific applications, it can be a problem when developing a bio-pesticide with long lasting effects. Finally, EOs are frequently phytotoxic, which is perfect for herbicide formulations, but not for other applications. In both cases, the development of a proper formulation is essential. Owing to the current attraction for natural products, a better understanding of their modes of biological action is of importance for the development of new and optimal applications.
Research & information: general --- Biology, life sciences --- natural antimicrobials --- encapsulation --- shelf-life --- microbiological quality --- micelles --- plant-derived antimicrobial --- Enteric pathogens --- leafy greens --- cheese --- essential oils --- Escherichia coli --- Clostridium tyrobutyricum --- Penicillium verrucosum --- antimicrobial --- Elsholtzia ciliata --- Tribolium castaneum --- essential oil --- carvone --- limonene --- insecticidal activity --- synergistic effect --- starch films --- active food packaging films --- cinnamon oil emulsions --- Botrytis cinerea --- Zanthoxylum leprieurii --- Sitophilus granarius --- tridecan-2-one --- β-myrcene --- (E)-β-ocimene --- dendrolasin --- antioxidant --- anti-inflammatory --- insecticidal --- anti-plasmodial --- Côte d’Ivoire --- Staphylococcus aureus --- S. epidermidis --- carvacrol --- thymol --- eugenol --- benzalkonium chloride --- biofilms --- planktonic --- disinfection --- natural products --- Aphis nerii --- Coccinella septempunctata --- plant-based insecticide --- Oryzaephius surinamensis --- Rhyzopertha dominica --- Trogoderma granarium --- thyme --- edible films --- high pressure thermal treatment --- ultrasonication --- food safety --- essential oil composition --- sabinene --- citronellal --- Sitophilus oryzae --- marinating solution --- pork loin --- quality --- safety --- phytotoxicity --- mode of action --- biopesticides --- biocontrol --- antifungal --- antibacterial --- biopesticide --- insecticide --- eco-friendly --- stored product pest --- Allium sativum --- Gaultheria procumbens --- Mentha arvensis --- Eucalyptus dives --- controlled release --- biosourced --- surface response methodology --- sweet wormwood --- mulberry pyralid --- mulberry --- immunity --- reproductive system --- digestive system --- n/a --- Côte d'Ivoire
Listing 1 - 10 of 12 | << page >> |
Sort by
|