Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Biopharmaceutical and pharmaceutical manufacturing are strongly influenced by the process analytical technology initiative (PAT) and quality by design (QbD) methodologies, which are designed to enhance the understanding of more integrated processes. The major aim of this effort can be summarized as developing a mechanistic understanding of a wide range of process steps, including the development of technologies to perform online measurements and real-time control and optimization. Furthermore, minimization of the number of empirical experiments and the model-assisted exploration of the process design space are targeted. Even if tremendous progress has been achieved so far, there is still work to be carried out in order to realize the full potential of the process systems engineering toolbox. Within this reprint, an overview of cutting-edge developments of process systems engineering for biopharmaceutical and pharmaceutical manufacturing processes is given, including model-based process design, Digital Twins, computer-aided process understanding, process development and optimization, and monitoring and control of bioprocesses. The biopharmaceutical processes addressed focus on the manufacturing of biopharmaceuticals, mainly by Chinese hamster ovary (CHO) cells, as well as adeno-associated virus production and generation of cell spheroids for cell therapies.
Technology: general issues --- History of engineering & technology --- clonal cell population --- phenotypic diversity --- inoculum train --- uncertainty-based --- cell culture model --- biopharmaceutical manufacturing --- Escherichia coli --- hybrid modeling --- machine learning --- model-assisted DoE --- quality by design --- upstream bioprocessing --- surface plasmon resonance (SPR) --- bioprocess --- monitoring --- biosensor --- quality by design (QbD) --- process analytical technology (PAT) --- biotherapeutics production --- vaccines production --- CHO DP-12 --- computational fluid dynamics --- bioreactor characterization --- hydrodynamic gradients --- process development --- critical shear stress --- Kolmogorov length scale --- operational space --- sensors --- cell culture --- spectroscopy --- PAT --- smart biomanufacturing --- soft-sensor --- Adeno-associated virus --- transfection --- PEI --- continuous --- gene therapy --- microcarriers --- bioreactor --- transient expression --- spheroid strength --- β-cells --- diabetes --- shear stress-guided production --- hydrodynamic stress --- Gaussian processes --- Bayes optimization --- Pareto optimization --- multi-objective --- seed train --- Chinese hamster ovary cells --- cryopreservation --- monoclonal antibodies --- N−1 perfusion --- process intensification --- upstream processing --- clonal cell population --- phenotypic diversity --- inoculum train --- uncertainty-based --- cell culture model --- biopharmaceutical manufacturing --- Escherichia coli --- hybrid modeling --- machine learning --- model-assisted DoE --- quality by design --- upstream bioprocessing --- surface plasmon resonance (SPR) --- bioprocess --- monitoring --- biosensor --- quality by design (QbD) --- process analytical technology (PAT) --- biotherapeutics production --- vaccines production --- CHO DP-12 --- computational fluid dynamics --- bioreactor characterization --- hydrodynamic gradients --- process development --- critical shear stress --- Kolmogorov length scale --- operational space --- sensors --- cell culture --- spectroscopy --- PAT --- smart biomanufacturing --- soft-sensor --- Adeno-associated virus --- transfection --- PEI --- continuous --- gene therapy --- microcarriers --- bioreactor --- transient expression --- spheroid strength --- β-cells --- diabetes --- shear stress-guided production --- hydrodynamic stress --- Gaussian processes --- Bayes optimization --- Pareto optimization --- multi-objective --- seed train --- Chinese hamster ovary cells --- cryopreservation --- monoclonal antibodies --- N−1 perfusion --- process intensification --- upstream processing
Choose an application
Biopharmaceutical and pharmaceutical manufacturing are strongly influenced by the process analytical technology initiative (PAT) and quality by design (QbD) methodologies, which are designed to enhance the understanding of more integrated processes. The major aim of this effort can be summarized as developing a mechanistic understanding of a wide range of process steps, including the development of technologies to perform online measurements and real-time control and optimization. Furthermore, minimization of the number of empirical experiments and the model-assisted exploration of the process design space are targeted. Even if tremendous progress has been achieved so far, there is still work to be carried out in order to realize the full potential of the process systems engineering toolbox. Within this reprint, an overview of cutting-edge developments of process systems engineering for biopharmaceutical and pharmaceutical manufacturing processes is given, including model-based process design, Digital Twins, computer-aided process understanding, process development and optimization, and monitoring and control of bioprocesses. The biopharmaceutical processes addressed focus on the manufacturing of biopharmaceuticals, mainly by Chinese hamster ovary (CHO) cells, as well as adeno-associated virus production and generation of cell spheroids for cell therapies.
Technology: general issues --- History of engineering & technology --- clonal cell population --- phenotypic diversity --- inoculum train --- uncertainty-based --- cell culture model --- biopharmaceutical manufacturing --- Escherichia coli --- hybrid modeling --- machine learning --- model-assisted DoE --- quality by design --- upstream bioprocessing --- surface plasmon resonance (SPR) --- bioprocess --- monitoring --- biosensor --- quality by design (QbD) --- process analytical technology (PAT) --- biotherapeutics production --- vaccines production --- CHO DP-12 --- computational fluid dynamics --- bioreactor characterization --- hydrodynamic gradients --- process development --- critical shear stress --- Kolmogorov length scale --- operational space --- sensors --- cell culture --- spectroscopy --- PAT --- smart biomanufacturing --- soft-sensor --- Adeno-associated virus --- transfection --- PEI --- continuous --- gene therapy --- microcarriers --- bioreactor --- transient expression --- spheroid strength --- β-cells --- diabetes --- shear stress-guided production --- hydrodynamic stress --- Gaussian processes --- Bayes optimization --- Pareto optimization --- multi-objective --- seed train --- Chinese hamster ovary cells --- cryopreservation --- monoclonal antibodies --- N−1 perfusion --- process intensification --- upstream processing --- n/a
Choose an application
Biopharmaceutical and pharmaceutical manufacturing are strongly influenced by the process analytical technology initiative (PAT) and quality by design (QbD) methodologies, which are designed to enhance the understanding of more integrated processes. The major aim of this effort can be summarized as developing a mechanistic understanding of a wide range of process steps, including the development of technologies to perform online measurements and real-time control and optimization. Furthermore, minimization of the number of empirical experiments and the model-assisted exploration of the process design space are targeted. Even if tremendous progress has been achieved so far, there is still work to be carried out in order to realize the full potential of the process systems engineering toolbox. Within this reprint, an overview of cutting-edge developments of process systems engineering for biopharmaceutical and pharmaceutical manufacturing processes is given, including model-based process design, Digital Twins, computer-aided process understanding, process development and optimization, and monitoring and control of bioprocesses. The biopharmaceutical processes addressed focus on the manufacturing of biopharmaceuticals, mainly by Chinese hamster ovary (CHO) cells, as well as adeno-associated virus production and generation of cell spheroids for cell therapies.
clonal cell population --- phenotypic diversity --- inoculum train --- uncertainty-based --- cell culture model --- biopharmaceutical manufacturing --- Escherichia coli --- hybrid modeling --- machine learning --- model-assisted DoE --- quality by design --- upstream bioprocessing --- surface plasmon resonance (SPR) --- bioprocess --- monitoring --- biosensor --- quality by design (QbD) --- process analytical technology (PAT) --- biotherapeutics production --- vaccines production --- CHO DP-12 --- computational fluid dynamics --- bioreactor characterization --- hydrodynamic gradients --- process development --- critical shear stress --- Kolmogorov length scale --- operational space --- sensors --- cell culture --- spectroscopy --- PAT --- smart biomanufacturing --- soft-sensor --- Adeno-associated virus --- transfection --- PEI --- continuous --- gene therapy --- microcarriers --- bioreactor --- transient expression --- spheroid strength --- β-cells --- diabetes --- shear stress-guided production --- hydrodynamic stress --- Gaussian processes --- Bayes optimization --- Pareto optimization --- multi-objective --- seed train --- Chinese hamster ovary cells --- cryopreservation --- monoclonal antibodies --- N−1 perfusion --- process intensification --- upstream processing --- n/a
Choose an application
The essential introduction to magnetic reconnection—written by a leading pioneer of the fieldPlasmas comprise more than 99 percent of the visible universe; and, wherever plasmas are, magnetic reconnection occurs. In this common and yet incompletely understood physical process, oppositely directed magnetic fields in a plasma meet, break, and then reconnect, converting the huge amounts of energy stored in magnetic fields into kinetic and thermal energy. In Magnetic Reconnection, Masaaki Yamada offers an illuminating synthesis of modern research and advances on this important topic. Magnetic reconnection produces such phenomena as solar flares and the northern lights, and occurs in nuclear fusion devices. A better understanding of this crucial cosmic activity is essential to comprehending the universe and varied technological applications, such as satellite communications. Most of our knowledge of magnetic reconnection comes from theoretical and computational models and laboratory experiments, but space missions launched in recent years have added up-close observation and measurements to researchers’ tools. Describing the fundamental physics of magnetic reconnection, Yamada connects the theory with the latest results from laboratory experiments and space-based observations, including the Magnetic Reconnection Experiment (MRX) and the Magnetospheric Multiscale (MMS) Mission. He concludes by considering outstanding problems and laying out a road map for future research.Aimed at advanced graduate students and researchers in plasma astrophysics, solar physics, and space physics, Magnetic Reconnection provides cutting-edge information vital area of scientific investigation.
Magnetic reconnection. --- SCIENCE / Physics / Magnetism. --- Acceleration. --- Accretion disk. --- Ampere. --- Annihilation. --- Astrophysical plasma. --- Astrophysics. --- Bremsstrahlung. --- Collision frequency. --- Collisionality. --- Coronal loop. --- Coronal mass ejection. --- Coulomb collision. --- Current density. --- Current sheet. --- Cyclotron. --- Debye length. --- Diffusion layer. --- Dissipation. --- Drift velocity. --- Dynamo theory. --- Electric field. --- Electrical resistivity and conductivity. --- Electron temperature. --- Electrostatics. --- Energy transformation. --- Experimental physics. --- Fermi acceleration. --- Feynman diagram. --- Field effect (semiconductor). --- Field line. --- Fine structure. --- Flux tube. --- Fusion power. --- Gauge theory. --- Gyroradius. --- Hall effect. --- Inductance. --- Induction equation. --- Instability. --- Interferometry. --- Ion acoustic wave. --- Ionization. --- Kinetic theory of gases. --- Kink instability. --- Landau damping. --- Langmuir probe. --- Length scale. --- Lorentz force. --- Madison Symmetric Torus. --- Magnetar. --- Magnetic confinement fusion. --- Magnetic diffusivity. --- Magnetic dipole. --- Magnetic energy. --- Magnetic field. --- Magnetic flux. --- Magnetic helicity. --- Magnetization. --- Magnetohydrodynamics. --- Magnetopause. --- Magnetosheath. --- Magnetosonic wave. --- Magnetosphere. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Momentum transfer. --- Neutral beam injection. --- Nonlinear optics. --- Nuclear fusion. --- Paramagnetism. --- Particle physics. --- Pitch angle (particle motion). --- Plasma (physics). --- Plasma acceleration. --- Plasma oscillation. --- Plasma parameter. --- Plasma parameters. --- Plasma stability. --- Plasmoid. --- Quadrupole. --- Relativistic plasma. --- Reversed field pinch. --- Safety factor (plasma physics). --- Scattering. --- Skin effect. --- Solar flare. --- Spacecraft. --- Spatial scale. --- Spheromak. --- Stark effect. --- Substorm. --- Synchrotron radiation. --- Thermodynamic equilibrium. --- Thomson scattering. --- Tokamak. --- Two-dimensional space. --- Van Allen radiation belt. --- Weibel instability. --- X-ray. --- Annihilation, Magnetic field --- Magnetic field annihilation --- Magnetic field line merging --- Merging, Magnetic field line --- Reconnection, Magnetic --- Reconnection (Astronomy) --- Astrophysics --- Geophysics --- Magnetic fields
Choose an application
From the Nobel Prize–winning physicist, a personal meditation on the quest for objective reality in natural scienceA century ago, thoughtful people questioned how reality could agree with physical theories that keep changing, from a mechanical model of the ether to electric and magnetic fields, and from homogeneous matter to electrons and atoms. Today, concepts like dark matter and dark energy further complicate and enrich the search for objective reality. The Whole Truth is a personal reflection on this ongoing quest by one of the world’s most esteemed cosmologists.What lies at the heart of physical science? What are the foundational ideas that inform and guide the enterprise? Is the concept of objective reality meaningful? If so, do our established physical theories usefully approximate it? P. J. E. Peebles takes on these and other big questions about the nature of science, drawing on a lifetime of experience as a leading physicist and using cosmology as an example. He traces the history of thought about the nature of physical science since Einstein, and succinctly lays out the fundamental working assumptions. Through a careful examination of the general theory of relativity, Einstein’s cosmological principle, and the theory of an expanding universe, Peebles shows the evidence that we are discovering the nature of reality in successive approximations through increasingly demanding scrutiny.A landmark work, The Whole Truth is essential reading for anyone interested in the practice of science.
Cosmology. --- Physics. --- Reality. --- Science --- SCIENCE / Cosmology. --- Philosophy. --- Absolute magnitude. --- Acceleration. --- Angular momentum. --- Approximation. --- Astronomer. --- Astronomy. --- Asymptotically flat spacetime. --- Atomic nucleus. --- Atomic number. --- Baryon. --- Big Bang. --- Calculation. --- Chronology of the universe. --- Classical limit. --- Classical physics. --- Comprehension (logic). --- Conservation law. --- Cosmic Evolution (book). --- Cosmological constant. --- Cosmological principle. --- Density. --- Empirical research. --- Equivalence principle. --- Existence. --- Extrapolation. --- Fred Hoyle. --- Galaxy cluster. --- Galaxy rotation curve. --- General relativity. --- George Gamow. --- Goodness of fit. --- Gravitational acceleration. --- Gravitational redshift. --- Gravity. --- Hubble's law. --- Inverse-square law. --- Jupiter. --- Kinetic energy. --- Kuiper belt. --- Length scale. --- Linear scale. --- Mach's principle. --- Mass distribution. --- Measurement. --- Metric expansion of space. --- Minkowski space. --- Modified Newtonian dynamics. --- Multiple discovery. --- NGC 2403. --- Natural science. --- Neutrino. --- Neutron. --- Newton's law of universal gravitation. --- Number density. --- Observation. --- Order of magnitude. --- Paradigm shift. --- Partial derivative. --- Particle physics in cosmology. --- Peirce (crater). --- Photon. --- Physical cosmology. --- Physical law. --- Physicist. --- Planetary nebula. --- Planetary system. --- Power law. --- Prediction. --- Predictive power. --- Present value. --- Quantum electrodynamics. --- Quantum mechanics. --- Redshift. --- Repeatability. --- Richard Feynman. --- Satellite. --- Scattering. --- Schwarzschild metric. --- Science wars. --- Scientist. --- Sirius. --- Social constructionism. --- Special relativity. --- Spiral galaxy. --- Steady State theory. --- Stellar classification. --- Supersymmetry. --- Temperature. --- Tests of general relativity. --- The Unreasonable Effectiveness of Mathematics in the Natural Sciences. --- Theoretical physics. --- Theory of relativity. --- Theory. --- Thermal radiation. --- Thomas Kuhn. --- Thought. --- Verificationism. --- Wavelength. --- White dwarf. --- Zero-point energy. --- Normal science --- Philosophy of science --- Philosophy --- Truth --- Nominalism --- Pluralism --- Pragmatism --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Astronomy --- Deism --- Metaphysics --- SCIENCE / Space Science / Cosmology --- SCIENCE / History
Listing 1 - 5 of 5 |
Sort by
|