Listing 1 - 10 of 1599 | << page >> |
Sort by
|
Choose an application
Measuring quality of experience (QoE) aims to explore the factors that contribute to a user's perceptual experience including human, system, and context factors. Since QoE stems from human interaction with various devices, the estimation should be started by investigating the mechanism of human visual perception. Therefore, measuring QoE is still a challenging task. In this standard, QoE assessment is categorized into two subcategories which are perceptual quality and virtual reality (VR) cybersickness. In addition, deep learning models considering human factors for various QoE assessments are covered, along with a reliable subjective test methodology and a database construction procedure.
Choose an application
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Choose an application
Choose an application
"In just the past five years, deep learning has taken the world by surprise, driving rapid progress in fields as diverse as computer vision, natural language processing, automatic speech recognition, etc. This book presents an introduction to deep learning and various applications of deep learning such as recommendation systems, text recognition, diabetic retinopathy prediction of breast cancer, prediction of epilepsy, sentiment, fake news detection, software defect prediction and protein function prediction"--
Choose an application
"Deep Learning: A Comprehensive Guide focuses on all the relevant topics in the field of Deep Learning. Covers the conceptual, mathematical and practical aspects of all relevant topics in deep learning Offers real time practical examples Provides case studies This book is aimed primarily at graduates, researchers and professional working in Deep Learning and AI concepts"--
Choose an application
Choose an application
Recent progress in artificial intelligence (AI) has revolutionized our everyday life. Many AI algorithms have reached human-level performance and AI agents are replacing humans in most professions. It is predicted that this trend will continue and 30% of workactivities in 60% of current occupations will be automated. This success, however, is conditioned on availability of huge annotated datasets to training AI models. Data annotation is a time-consuming and expensive task which still is being performed by human workers. Learning efficiently from less data is a next step for making AI more similar to natural intelligence. Transfer learning has been suggested a remedy to relax the need for data annotation. The core idea in transfer learning is to transfer knowledge across similar tasks and use similarities and previously learned knowledge to learn more efficiently. In this book, we provide a brief background on transfer learning and then focus on the idea of transferring knowledge through intermediate embedding spaces. The idea is to couple and relate different learning through embedding spaces that encode task-level relations and similarities. We cover various machine learning scenarios and demonstrate that this idea can be used to overcome challenges of zero-shot learning, few-shot learning, domain adaptation, continual learning, lifelong learning, and collaborative learning.
Choose an application
This book describes the functions frequently used in deep neural networks.
Choose an application
AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.
Choose an application
We are delighted to bring forth this volume of TutORials highlighting selective recent exciting developments from many Informs communities to address critical challenges from various applications. We believe this compilation of contributions by experts from these topics will be a good representation of the current and emerging trends in OR/MS. We provide brief summaries of the chapters under sub-themes of the compilation.
Listing 1 - 10 of 1599 | << page >> |
Sort by
|