Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Laser Speckle and Applications in Optics
Choose an application
This dissertation by Martin Hultman explores advancements in real-time laser speckle contrast imaging (LSCI) for measuring skin perfusion. The work addresses limitations of traditional LSCI by developing a real-time multi-exposure laser speckle contrast imaging (MELSCI) system using advanced algorithms and hardware. The study focuses on improving accuracy and reducing noise in perfusion measurements, utilizing artificial neural networks for real-time data analysis. The research demonstrates the potential clinical applications of MELSCI in monitoring blood flow dynamics during medical interventions. Aimed at biomedical researchers and clinicians, the dissertation contributes to enhancing non-invasive imaging techniques for better patient care.
Laser speckle. --- Diagnostic imaging. --- Laser speckle --- Diagnostic imaging
Choose an application
Laser speckle. --- Optics. --- Optics. Quantum optics --- Laser speckle pattern method --- Speckle photography --- Speckles
Choose an application
Laser speckle --- Laser beams --- Interference (Light) --- Coherence (Optics) --- Interference (Lumiere) --- Cohérence optique --- Scattering --- Laser speckle. --- Scattering. --- Coherence (Optics). --- Interference (Light). --- Cohérence optique
Choose an application
The purpose of this SI is to provide an overview of recent advances made in the methods used for tissue imaging and characterization, which benefit from using a large range of optical wavelengths. Guerouah et al. has contributed a profound study of the responses of the adult human brain to breath-holding challenges based on hyperspectral near-infrared spectroscopy (hNIRS). Lange et al. contributed a timely and comprehensive review of the features and biomedical and clinical applications of supercontinuum laser sources. Blaney et al. reported the development of a calibration-free hNIRS system that can measure the absolute and broadband absorption and scattering spectra of turbid media. Slooter et al. studied the utility of measuring multiple tissue parameters simultaneously using four optical techniques operating at different wavelengths of light—optical coherence tomography (1300 nm), sidestream darkfield microscopy (530 nm), laser speckle contrast imaging (785 nm), and fluorescence angiography (~800 nm)—in the gastric conduit during esophagectomy. Caredda et al. showed the feasibility of accurately quantifying the oxy- and deoxy-hemoglobin and cytochrome-c-oxidase responses to neuronal activation and obtaining spatial maps of these responses using a setup consisting of a white light source and a hyperspectral or standard RGB camera. It is interest for the developers and potential users of clinical brain and tissue optical monitors, and for researchers studying brain physiology and functional brain activity.
Public health & preventive medicine --- hemodynamic brain mapping --- metabolic brain mapping --- Monte Carlo simulations --- intraoperative imaging --- optical imaging --- hyperspectral imaging --- RGB imaging --- fluorescence imaging --- fluorescence angiography --- indocyanine green (ICG) --- optical coherence tomography (OCT) --- laser speckle contrast imaging (LSCI) --- esophagectomy --- gastric conduit --- Sidestream Darkfield Microscopy (SDF) --- multispectral --- broadband diffuse reflectance spectroscopy --- frequency-domain near-infrared spectroscopy --- dual-slope --- absorption spectra --- supercontinuum laser --- NIRS --- tissue optics --- diffuse optics --- near-infrared spectroscopy --- brain --- BOLD signal --- breath-holding --- cytochrome C oxidase --- n/a
Choose an application
The purpose of this SI is to provide an overview of recent advances made in the methods used for tissue imaging and characterization, which benefit from using a large range of optical wavelengths. Guerouah et al. has contributed a profound study of the responses of the adult human brain to breath-holding challenges based on hyperspectral near-infrared spectroscopy (hNIRS). Lange et al. contributed a timely and comprehensive review of the features and biomedical and clinical applications of supercontinuum laser sources. Blaney et al. reported the development of a calibration-free hNIRS system that can measure the absolute and broadband absorption and scattering spectra of turbid media. Slooter et al. studied the utility of measuring multiple tissue parameters simultaneously using four optical techniques operating at different wavelengths of light—optical coherence tomography (1300 nm), sidestream darkfield microscopy (530 nm), laser speckle contrast imaging (785 nm), and fluorescence angiography (~800 nm)—in the gastric conduit during esophagectomy. Caredda et al. showed the feasibility of accurately quantifying the oxy- and deoxy-hemoglobin and cytochrome-c-oxidase responses to neuronal activation and obtaining spatial maps of these responses using a setup consisting of a white light source and a hyperspectral or standard RGB camera. It is interest for the developers and potential users of clinical brain and tissue optical monitors, and for researchers studying brain physiology and functional brain activity.
hemodynamic brain mapping --- metabolic brain mapping --- Monte Carlo simulations --- intraoperative imaging --- optical imaging --- hyperspectral imaging --- RGB imaging --- fluorescence imaging --- fluorescence angiography --- indocyanine green (ICG) --- optical coherence tomography (OCT) --- laser speckle contrast imaging (LSCI) --- esophagectomy --- gastric conduit --- Sidestream Darkfield Microscopy (SDF) --- multispectral --- broadband diffuse reflectance spectroscopy --- frequency-domain near-infrared spectroscopy --- dual-slope --- absorption spectra --- supercontinuum laser --- NIRS --- tissue optics --- diffuse optics --- near-infrared spectroscopy --- brain --- BOLD signal --- breath-holding --- cytochrome C oxidase --- n/a
Choose an application
The purpose of this SI is to provide an overview of recent advances made in the methods used for tissue imaging and characterization, which benefit from using a large range of optical wavelengths. Guerouah et al. has contributed a profound study of the responses of the adult human brain to breath-holding challenges based on hyperspectral near-infrared spectroscopy (hNIRS). Lange et al. contributed a timely and comprehensive review of the features and biomedical and clinical applications of supercontinuum laser sources. Blaney et al. reported the development of a calibration-free hNIRS system that can measure the absolute and broadband absorption and scattering spectra of turbid media. Slooter et al. studied the utility of measuring multiple tissue parameters simultaneously using four optical techniques operating at different wavelengths of light—optical coherence tomography (1300 nm), sidestream darkfield microscopy (530 nm), laser speckle contrast imaging (785 nm), and fluorescence angiography (~800 nm)—in the gastric conduit during esophagectomy. Caredda et al. showed the feasibility of accurately quantifying the oxy- and deoxy-hemoglobin and cytochrome-c-oxidase responses to neuronal activation and obtaining spatial maps of these responses using a setup consisting of a white light source and a hyperspectral or standard RGB camera. It is interest for the developers and potential users of clinical brain and tissue optical monitors, and for researchers studying brain physiology and functional brain activity.
Public health & preventive medicine --- hemodynamic brain mapping --- metabolic brain mapping --- Monte Carlo simulations --- intraoperative imaging --- optical imaging --- hyperspectral imaging --- RGB imaging --- fluorescence imaging --- fluorescence angiography --- indocyanine green (ICG) --- optical coherence tomography (OCT) --- laser speckle contrast imaging (LSCI) --- esophagectomy --- gastric conduit --- Sidestream Darkfield Microscopy (SDF) --- multispectral --- broadband diffuse reflectance spectroscopy --- frequency-domain near-infrared spectroscopy --- dual-slope --- absorption spectra --- supercontinuum laser --- NIRS --- tissue optics --- diffuse optics --- near-infrared spectroscopy --- brain --- BOLD signal --- breath-holding --- cytochrome C oxidase
Choose an application
In the last decade, issues related to pollution from microplastics in all environmental compartments and the associated health and environmental risks have been the focus of intense social, media, and political attention worldwide. The assessment, quantification, and study of the degradation processes of plastic debris in the ecosystem and its interaction with biota have been and are still the focus of intense multidisciplinary research. Plastic particles in the range from 1 to 5 mm and those in the sub-micrometer range are commonly denoted as microplastics and nanoplastics, respectively. Microplastics (MPs) are being recognized as nearly ubiquitous pollutants in water bodies, but their actual concentration, distribution, and effects on natural waters, sediments, and biota are still largely unknown. Contamination by microplastics of agricultural soil and other environmental areas is also becoming a matter of concern. Sampling, separation, detection, characterization and evaluating the degradation pathways of micro- and nano-plastic pollutants dispersed in the environment is a challenging and critical goal to understand their distribution, fate, and the related hazards for ecosystems. Given the interest in this topic, this Special Issue, entitled “Microplastics Degradation and Characterization”, is concerned with the latest developments in the study of microplastics.
Mathematics & science --- Chemistry --- Quantum & theoretical chemistry --- PEEK --- SIRM --- damage mechanisms --- GISAXS --- irradiation --- micro and nanoplastics --- freshwater --- sludge --- optical detection --- portable devices --- in situ detection --- microplastics --- marine sediment --- pet --- nylon 6 --- nylon 6,6 --- reversed-phase HPLC --- polyolefin --- polystyrene --- Pyr-GC/MS --- polymer degradation --- microparticles --- PLA --- PBS --- enzymes --- specificity --- thermal profile --- activation energy --- wastewater --- Raman spectroscopy --- laser speckle pattern --- transmittance --- sedimentation --- HDPE --- microbeads --- photocatalysis --- scavengers --- C,N-TiO2 --- remediation --- nanotechnology --- plastic pollution --- visible light photodegradation --- microplastic --- ratiometric detection --- no-wash fluorescent probe --- imaging --- one-pot reaction --- water remediation --- nanoplastic --- artificial ageing --- polyolefins --- polyethylene terephthalate --- microplastic fiber --- washing textile --- drying textile --- polyester yarn types --- microplastic extraction --- oil extraction --- density separation --- GC–MS --- mass spectrometry identification --- plastic polymers --- polyethylene --- terrestrial --- soil --- polymers --- geotechnics --- landfills --- geosynthetics --- GCL --- clay liner --- hydraulic conductivity --- plastics --- anthropogenic activities --- quantification --- marine --- multi-parametric platform --- bioplastics --- marine environment --- spectroscopy --- resin pellets --- nanoplastics --- microplastic detection and identification --- microplastic quantification --- food packaging --- particle release --- plastic consumption --- ecotoxicity assessment --- size influence --- concentration influence --- microplastic pellets --- weathering --- degradation --- Yellowness Index --- Fourier transform infrared spectroscopy --- persistent organic pollutants --- oxidative digestion --- Fenton’s reagent --- virgin --- aged --- SEM --- FTIR --- PAHs --- surface water --- chemical composition --- Ho Chi Minh City --- cement mortars --- municipal incinerated bottom ash --- PET pellets --- hydrogel --- potassium and sodium polyacrylate --- swelling --- physicochemical changes in the water --- polymeric nanoparticles --- Portugal --- resin --- pharmaceutical --- PVC --- paint --- wastewater treatment plant --- South China Sea --- pollution --- Py-GC/MS --- fragmentation and degradation --- mechanism
Listing 1 - 8 of 8 |
Sort by
|