Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

More...

Resource type

book (4)


Language

English (3)

French (1)


Year
From To Submit

2022 (3)

2000 (1)

Listing 1 - 4 of 4
Sort by

Book
Modélisation et théorie des flammes
Authors: ---
Year: 2000 Publisher: Paris : Technip,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Numerical Investigations of Combustion
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.


Book
Numerical Investigations of Combustion
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.


Book
Numerical Investigations of Combustion
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue will highlight the latest advances in numerical modeling of combustion-related applications. With the recent advancements in computational capacities and the widespread use of simulations in engineering problems, numerical methods are becoming increasingly important to improve existing models and develop new models that can help researchers to better understand the underlying mechanisms of combustion, their interaction with other physical phenomena, such as turbulence, and their impacts on the performance of related applications at both fundamental and practical levels.

Keywords

Technology: general issues --- History of engineering & technology --- gas fire suppression --- inert gas agents --- agent quantity --- discharge rate --- ventilation rate --- premixed combustion --- obstructed channels --- flame acceleration --- thermal expansion --- computational simulations --- machine learning --- soot concentration --- soot emissions --- artificial neural network --- estimator --- computational fluid dynamics --- combustion --- biogas --- hydrogen --- laminar flame speed --- correlation --- jet-and-recirculation stabilized combustion --- OH* measurements --- numerical CFD analysis --- RANS modeling --- detailed chemistry schemes --- heat-loss modeling --- low-calorific combustion --- syngas fuel --- micro-combustion --- syngas --- repetitive extinction and ignition (FREI) --- numerical simulations --- flame instabilities --- flame propagation --- closed spherical bomb --- incipient stage --- methane --- N2O --- flash boiling --- gasoline direct injection --- Spray G --- discrete droplet method --- fuel surrogates --- combustion process --- reactivity model --- synthetic jet fuels --- turbine engines --- two-stroke engine --- multiple injection --- emission --- numerical simulation --- computational fluid dynamic (CFD) --- natural gas --- laminar burning velocity (LBV) --- closed vessel combustion --- numerical study --- microcombustion --- complex geometry --- gas fire suppression --- inert gas agents --- agent quantity --- discharge rate --- ventilation rate --- premixed combustion --- obstructed channels --- flame acceleration --- thermal expansion --- computational simulations --- machine learning --- soot concentration --- soot emissions --- artificial neural network --- estimator --- computational fluid dynamics --- combustion --- biogas --- hydrogen --- laminar flame speed --- correlation --- jet-and-recirculation stabilized combustion --- OH* measurements --- numerical CFD analysis --- RANS modeling --- detailed chemistry schemes --- heat-loss modeling --- low-calorific combustion --- syngas fuel --- micro-combustion --- syngas --- repetitive extinction and ignition (FREI) --- numerical simulations --- flame instabilities --- flame propagation --- closed spherical bomb --- incipient stage --- methane --- N2O --- flash boiling --- gasoline direct injection --- Spray G --- discrete droplet method --- fuel surrogates --- combustion process --- reactivity model --- synthetic jet fuels --- turbine engines --- two-stroke engine --- multiple injection --- emission --- numerical simulation --- computational fluid dynamic (CFD) --- natural gas --- laminar burning velocity (LBV) --- closed vessel combustion --- numerical study --- microcombustion --- complex geometry

Listing 1 - 4 of 4
Sort by