Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers.
Technology: general issues --- HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm
Choose an application
Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers.
HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm
Choose an application
This book is a systematic study of the classical and quantum theories of gauge systems. It starts with Dirac's analysis showing that gauge theories are constrained Hamiltonian systems. The classical foundations of BRST theory are then laid out with a review of the necessary concepts from homological algebra. Reducible gauge systems are discussed, and the relationship between BRST cohomology and gauge invariance is carefully explained. The authors then proceed to the canonical quantization of gauge systems, first without ghosts (reduced phase space quantization, Dirac method) and second in the BRST context (quantum BRST cohomology). The path integral is discussed next. The analysis covers indefinite metric systems, operator insertions, and Ward identities. The antifield formalism is also studied and its equivalence with canonical methods is derived. The examples of electromagnetism and abelian 2-form gauge fields are treated in detail. The book gives a general and unified treatment of the subject in a self-contained manner. Exercises are provided at the end of each chapter, and pedagogical examples are covered in the text.
Gauge fields (Physics) --- Abelian constraints. --- Berezin integral. --- Canonical Hamiltonian. --- Fourier transformation. --- Gauss law. --- Gaussian average. --- Green functions. --- Heisenberg algebra. --- Jacobi identity. --- Kunneth formula. --- Lagrange multipliers. --- Pauli matrices. --- antighost number. --- auxiliary fields. --- boundary operator. --- cohomology. --- convolution. --- derivations. --- differential. --- doublet. --- effective action. --- extended action. --- exterior product. --- harmonic states. --- involution. --- left derivatives. --- local commutativity. --- nontrivial cycle. --- superdomain.
Choose an application
Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers.
Technology: general issues --- HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm --- HVAC --- water-cooled condenser --- air-cooled condenser --- evaporative --- TWI --- turbulence modeling --- supercritical injection --- Liquid Rocket Engines --- energy saving and efficiency --- aerodynamic coefficients --- propulsive efficiency --- bioenergetics --- biomimetics --- grid-tied inverter --- grey wolf optimizer --- PR controllers --- LCL filter --- passive damping --- propeller --- aircraft --- turboprop --- flight efficiency --- flight speed --- hydro-thermal coordination --- Lagrangian relaxation --- Lagrangian dual problem --- Lagrange multipliers --- subgradient methods --- step-size update algorithm
Choose an application
In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems.
Research & information: general --- Mathematics & science --- ecological inference --- generalized cross entropy --- distributional weighted regression --- matrix adjustment --- entropy --- critical phenomena --- renormalization --- multiscale thermodynamics --- GENERIC --- non-Newtonian calculus --- non-Diophantine arithmetic --- Kolmogorov-Nagumo averages --- escort probabilities --- generalized entropies --- maximum entropy principle --- MaxEnt distribution --- calibration invariance --- Lagrange multipliers --- generalized Bilal distribution --- adaptive Type-II progressive hybrid censoring scheme --- maximum likelihood estimation --- Bayesian estimation --- Lindley's approximation --- confidence interval --- Markov chain Monte Carlo method --- Rényi entropy --- Tsallis entropy --- entropic uncertainty relations --- quantum metrology --- non-equilibrium thermodynamics --- variational entropy --- rényi entropy --- tsallis entropy --- landsberg-vedral entropy --- gaussian entropy --- sharma-mittal entropy --- α-mutual information --- α-channel capacity --- maximum entropy --- Bayesian inference --- updating probabilities --- ecological inference --- generalized cross entropy --- distributional weighted regression --- matrix adjustment --- entropy --- critical phenomena --- renormalization --- multiscale thermodynamics --- GENERIC --- non-Newtonian calculus --- non-Diophantine arithmetic --- Kolmogorov-Nagumo averages --- escort probabilities --- generalized entropies --- maximum entropy principle --- MaxEnt distribution --- calibration invariance --- Lagrange multipliers --- generalized Bilal distribution --- adaptive Type-II progressive hybrid censoring scheme --- maximum likelihood estimation --- Bayesian estimation --- Lindley's approximation --- confidence interval --- Markov chain Monte Carlo method --- Rényi entropy --- Tsallis entropy --- entropic uncertainty relations --- quantum metrology --- non-equilibrium thermodynamics --- variational entropy --- rényi entropy --- tsallis entropy --- landsberg-vedral entropy --- gaussian entropy --- sharma-mittal entropy --- α-mutual information --- α-channel capacity --- maximum entropy --- Bayesian inference --- updating probabilities
Choose an application
In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems.
ecological inference --- generalized cross entropy --- distributional weighted regression --- matrix adjustment --- entropy --- critical phenomena --- renormalization --- multiscale thermodynamics --- GENERIC --- non-Newtonian calculus --- non-Diophantine arithmetic --- Kolmogorov–Nagumo averages --- escort probabilities --- generalized entropies --- maximum entropy principle --- MaxEnt distribution --- calibration invariance --- Lagrange multipliers --- generalized Bilal distribution --- adaptive Type-II progressive hybrid censoring scheme --- maximum likelihood estimation --- Bayesian estimation --- Lindley’s approximation --- confidence interval --- Markov chain Monte Carlo method --- Rényi entropy --- Tsallis entropy --- entropic uncertainty relations --- quantum metrology --- non-equilibrium thermodynamics --- variational entropy --- rényi entropy --- tsallis entropy --- landsberg—vedral entropy --- gaussian entropy --- sharma—mittal entropy --- α-mutual information --- α-channel capacity --- maximum entropy --- Bayesian inference --- updating probabilities --- n/a --- Kolmogorov-Nagumo averages --- Lindley's approximation --- Rényi entropy --- rényi entropy --- landsberg-vedral entropy --- sharma-mittal entropy
Listing 1 - 6 of 6 |
Sort by
|