Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2021 (2)

2017 (1)

Listing 1 - 3 of 3
Sort by

Book
Recent Progress in Understanding the Mechanism and Consequences of Retrotransposon Movement
Authors: ---
ISBN: 3038425419 3038425400 Year: 2017 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Retrotransposons are present in essentially all eukaryotic genomes and come in two basic flavors: those that are bracketed by long terminal repeats (LTRs) and share a common ancestor with retroviruses, and non-LTR retrotransposons that have a distinct lineage and remain transpositionally active in humans. Both types of retrotransposons replicate through an RNA intermediate, stably integrate into the host genome and have accumulated to a very high copy number in mammals and certain plant species. Autonomous elements produce transcripts capable of undergoing reverse transcription, and minimally encode proteins with reverse transcriptase, integrase/endonucleolytic, and nucleic acid chaperone activities. Retrotransposons are currently distinguished from viruses, since the process of retrotransposition is not infectious. However, this boundary may prove to be provisional as we learn more about these mobile genetic elements. The goal of this Special Issue of Viruses is to highlight progress in understanding the mechanism and consequences of retrotransposon movement. Several active research areas may be covered in reviews and research articles, including the roles of cellular modulators and defense systems, retrotransposon expression and replication, retrotransposon-induced mutations and their association with human diseases, and how these widely disseminated elements mold eukaryotic genomes.


Book
Genetics and Improvement of Forest Trees
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Forest tree improvement has mainly been implemented to enhance the productivity of artificial forests. However, given the drastically changing global environment, improvement of various traits related to environmental adaptability is more essential than ever. This book focuses on genetic information, including trait heritability and the physiological mechanisms thereof, which facilitate tree improvement. Nineteen papers are included, reporting genetic approaches to improving various species, including conifers, broad-leaf trees, and bamboo. All of the papers in this book provide cutting-edge genetic information on tree genetics and suggest research directions for future tree improvement.

Keywords

Research & information: general --- early selection --- stomatal characteristics --- water stress --- water relations --- specific leaf area --- Eucalyptus clones --- LTR-retrotransposon --- Ty3-gypsy --- Ty1-copia --- IRAP --- molecular markers --- bamboo --- Phyllostachys --- genetic diversity --- populations structure --- AMOVA --- central-marginal hypothesis --- cline --- Pinaceae --- trailing edge population --- Sakhalin fir --- sub-boreal forest --- gibberellin --- male strobilus induction --- transcriptome --- conifer --- Cryptomeria japonica --- linkage map --- male sterility --- marker-assisted selection --- C. fortunei --- differentially expressed genes --- phenylpropanoid metabolism --- candidate genes --- Camellia oleifera --- leaf senescence --- transcriptome analysis --- senescence-associated genes --- physiological characterization --- cpDNA --- next generation sequencing --- northern limit --- nucleotide diversity --- phylogeny --- In/Del --- SNP --- SSR --- Chinese fir --- heartwood --- secondary metabolites --- widely targeted metabolomics --- flavonoids --- amplicon sequencing --- AmpliSeq --- genomic selection --- Japanese cedar (Cryptomeria japonica) --- multiplexed SNP genotyping --- spatial autocorrelation error --- pine wood disease --- resistance to pine wood nematode --- inoculation test --- multisite --- cumulative temperature --- Pinus thunbergii --- Thujopsis dolabrata --- EST-SSR markers --- varieties --- population structure --- pine wilt disease --- Bursaphelenchus xylophilus --- genotype by environment interaction --- Japanese black pine --- variance component --- local adaptation --- silviculture --- seed zone --- tree improvement program --- breeding --- genotype × environment interaction --- mast seeding --- seed production --- thinning --- forest tree breeding --- high-throughput phenotyping --- epigenetics --- genotyping --- genomic prediction models --- quantitative trait locus --- breeding cycle --- Cryptomeria japonica var. sinensis --- demographic history --- RAD-seq --- ancient tree --- conservation --- infrared thermography --- chlorophyll fluorescence --- cumulative drought stress --- genetic conservation --- genetic management --- pine wood nematode --- pine wood nematode-Pinus thunbergii resistant trees --- n/a


Book
Genetics and Improvement of Forest Trees
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Forest tree improvement has mainly been implemented to enhance the productivity of artificial forests. However, given the drastically changing global environment, improvement of various traits related to environmental adaptability is more essential than ever. This book focuses on genetic information, including trait heritability and the physiological mechanisms thereof, which facilitate tree improvement. Nineteen papers are included, reporting genetic approaches to improving various species, including conifers, broad-leaf trees, and bamboo. All of the papers in this book provide cutting-edge genetic information on tree genetics and suggest research directions for future tree improvement.

Keywords

early selection --- stomatal characteristics --- water stress --- water relations --- specific leaf area --- Eucalyptus clones --- LTR-retrotransposon --- Ty3-gypsy --- Ty1-copia --- IRAP --- molecular markers --- bamboo --- Phyllostachys --- genetic diversity --- populations structure --- AMOVA --- central-marginal hypothesis --- cline --- Pinaceae --- trailing edge population --- Sakhalin fir --- sub-boreal forest --- gibberellin --- male strobilus induction --- transcriptome --- conifer --- Cryptomeria japonica --- linkage map --- male sterility --- marker-assisted selection --- C. fortunei --- differentially expressed genes --- phenylpropanoid metabolism --- candidate genes --- Camellia oleifera --- leaf senescence --- transcriptome analysis --- senescence-associated genes --- physiological characterization --- cpDNA --- next generation sequencing --- northern limit --- nucleotide diversity --- phylogeny --- In/Del --- SNP --- SSR --- Chinese fir --- heartwood --- secondary metabolites --- widely targeted metabolomics --- flavonoids --- amplicon sequencing --- AmpliSeq --- genomic selection --- Japanese cedar (Cryptomeria japonica) --- multiplexed SNP genotyping --- spatial autocorrelation error --- pine wood disease --- resistance to pine wood nematode --- inoculation test --- multisite --- cumulative temperature --- Pinus thunbergii --- Thujopsis dolabrata --- EST-SSR markers --- varieties --- population structure --- pine wilt disease --- Bursaphelenchus xylophilus --- genotype by environment interaction --- Japanese black pine --- variance component --- local adaptation --- silviculture --- seed zone --- tree improvement program --- breeding --- genotype × environment interaction --- mast seeding --- seed production --- thinning --- forest tree breeding --- high-throughput phenotyping --- epigenetics --- genotyping --- genomic prediction models --- quantitative trait locus --- breeding cycle --- Cryptomeria japonica var. sinensis --- demographic history --- RAD-seq --- ancient tree --- conservation --- infrared thermography --- chlorophyll fluorescence --- cumulative drought stress --- genetic conservation --- genetic management --- pine wood nematode --- pine wood nematode-Pinus thunbergii resistant trees --- n/a

Listing 1 - 3 of 3
Sort by