Listing 1 - 10 of 142 | << page >> |
Sort by
|
Choose an application
L’objectif général de ce travail de fin d’études était d’améliorer la méthode de dosage de trace d’hormones naturelles (E1, E2 et E3) et synthétique (EE2). Cette méthode a été développée par Alex Glineur (2016). Cette méthode de dosage UPLC-MS/MS a tout d’abord été testée sur trois types d’échantillon d’eau soigneusement choisis (eaux de surface et eau souterraine). Les performances de la méthode ainsi que les voies d’amélioration ont été étudiées. L’ajout d’une étape SPE de clean-up ainsi que l’utilisation d’une phase stationnaire alternative (UPLC) ont été déterminés comme axes principaux d’amélioration de la méthode. L’étude ainsi que la résolution de la problématique importante de la suppression d’ionisation ont également constitué un point important de ce travail. En effet, ce phénomène est observé de manière récurrente sur des échantillons d’eau en MS (/MS) mode electrospray (ESI). L’ajout de la cartouche à caractéristiques polaires Florisil ainsi que l’utilisation de la colonne chromatographique Biphényl ont permis de supprimer drastiquement l’effet de suppression d’ionisation tout en garantissant des rendements acceptables. La séparation de l’éluat de la cartouche Florisil en deux fractions (E1+E2+EE2 et E3) s’est avérée essentielle pour associer rendement important et limitation remarquable de la suppression d’ionisation. La méthode présentée par Alex Glineur ne permettait pas encore d’identifier et quantifier l’17-α ethynylestradiol à la valeur de LOQ recommandée par la Commission Européenne dans des eaux (suspectées) d’être contaminées (proche de 0,1 ng/L). La confirmation même de la présence de cette molécule était impossible à de très faibles concentrations (proches de 0,1 ng/L). En effet, les ratios des qualifiers liés à des fragments très à très peu spécifiques étaient tous biens supérieurs à leur intervalle de confiance de valeurs. Des interférences présentes dans la matrice Sambre (matrice de référence) perturbaient l’analyse d’EE2 et la méthode améliorée a montré son efficacité en offrant des ratios corrects pour la majorité des qualifiers. Cette capacité à identifier et à quantifier EE2 naturellement présent à des valeurs autour du dixième de ng/L a été confirmée par l’analyse de la Haine (Hensies). La méthode finale présentée est capable de répondre aux récentes exigences de la Commission Européenne en termes de LOQ en ce qui concerne les trois estrogènes que cette dernière a ciblés (E1, E2 et EE2). La validation de cette méthode est l’ultime étape avant sa possible utilisation en routine.
Choose an application
The noble false black widow spider, Steatoda nobilis, is an invasive species widely observed in Europe, and whose venom has recently been demonstrated to be of concern. Indeed, by adapting easily to urban environments, spider bites can cause significant effects, even in humans. The purpose of this work is to investigate the nature and localization of Steatoda nobilis metabolites so as to better describe the spider, especially since the metabolome of arthropods is currently understudied. In this study, we propose an experimental protocol for preparing whole spider samples. Initially, extracts will be performed and analyzed by LC-MS/MS using a TIMSTOF-pro-2 type mass spectrometer. Subsequently, spider sections will be prepared for imaging using an FT-ICR type spectrometer. The goal is to identify metabolites using different mass spectrometry methods and then locate these molecules on sections to determine their organ/zone of origin through imaging. Sample preparation, whether for LC-MS/MS or imaging, is challenging for such complex samples. To be analyzed by LC-MS/MS, spiders must first be crushed, and metabolites extracted from this mash. The sample must still be treated with care to ensure that no particles that could obstruct the chromatographic system persist in the liquid sample. For imaging, spiders will be embedded in a gel, cryogenically frozen, sliced into thin sections, and coated with matrix for observation by MALDI-FT-ICR. Besides the analytical approach demonstrating the complexity of the Steatoda nobilis metabolome, the LC-MS/MS results will be exploited to confirm the identification of ions obtained in imaging. Mass spectrometry imaging is a complex method to implement, generating very large data files, up to several Tb. Data processing involves reducing their size by controlled downsizing of the acquired data quantity. The images will be studied using a combination of three bioinformatics tools: (i) SCiLS® to assess image quality and transform files into open-source formats; (ii) a laboratory-developed program to classify ions by the Kendrick method and link them to specific spider organs, and (iii) Metaspace® to identify molecules and link them to previously highlighted areas. One challenge of this approach will be the lack of data in the databases on which identification can rely. In conclusion, the combination of these two analytical methods yields promising results for the metabolomic study of whole specimens of Steatoda nobilis. It is evident that both approaches are complementary and could form a credible basis for the study of metabolomes of arthropods, insects, or any other small-sized animal that has been overlooked until now.
Choose an application
Glyphosate (N-(phosphonomethyl)glycine) is the most used herbicide worldwide. It exhibits all the advantages of the perfect herbicide : it is universal in the way it targets an enzyme present in all plants as well as algae and numerous microorganisms; but not animals, making its acute toxicity very low for human and fauna, its mobility in soil has long been regarded as negligible, it is degraded by UV light (including sunlight) and bacteria commonly found in soils, it allows to limit ploughing and thus to promote soil conservation by reducing erosion; and, above all, it also has the tremendous advantage to spare genetically modified resistant crops, providing a huge financial benefits and allowing to reduce the use of other more toxic herbicides as well as the carbon footprint through reduced use of agricultural machinery. However, the decades-long debate on its carcinogenicity has been reignited in 2015 when the International Agency for Research on Cancer classified glyphosate as “possibly carcinogenic to humans” (category 2A). The chronic effects of glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA), (i.e. carcinogenicity, mutagenicity, endocrine disruptor potency...) are a real concern knowing that glyphosate is so widely used that the two contaminants , and mostly the more mobile AMPA, has been shown to reach water tables and to become ubiquitous in soils, water streams and sewage. Indeed, the molecule has been shown to be quite persistent in water and soils in a certain number of conditions of composition, weather and bacterial communities. Glyphosate metabolization in plants is vastly recognized as low or negligible, which suggest that genetically modified resistant crops might thus accumulate the herbicide until consumption. Finally, a few studies and even instances of the World Health Organization have been starting to suggest that the negative effects of glyphosate on health -through the studies of bees exposed to the herbicide- could be due to its supposed harmful effect on beneficial intestinal microbiota. All of these considerations make the accurate monitoring of glyphosate and AMPA in the environment, drinking water and food commodities a public health and environmental priority. The routine analysis of highly polar pesticide has always been challenging in liquid chromatography since these compounds are not compatible with the QuEChERS solid phase extraction associated with reversed phase liquid chromatography, commonly used in multiresidue analysis, nor normal phase liquid chromatography. Yet many popular pesticides fall into this category, including glyphosate and its metabolite, AMPA. So far, the methods used for quantification of glyphosate and AMPA involved a derivatization step and day-long manipulations that may be regarded as tedious. In this work was a quick, cheap and effective direct determination method for glyphosate and AMPA in sugar beet root using an Hydrophilic Interaction Liquid Chromatography (HILIC) column with a diethylamine stationary phase fit for retention and separation of highly polar anionic compounds; based on the QuPPe-PO extraction method from the European Reference Laboratories for Single Residue Methods (EURL-SRM) and validated in accordance to the requirements in force at the BEAGx and the SANTE/12682/2019 guidelines. The chosen matrix was sugar beet root. In the E.U., as resistant GM sugar beet are not approved for cultivation, glyphosate is only used for clearing weeds before sowing. However, in the U.S., almost all cultivated sugar beets are GM glyphosate-resistant crops, treated with the herbicide up to three times during cultivation. They are allowed for importation, food and feed use in the E.U., as well as their derived products and by-products. And as European public opinion on glyphosate is deteriorating, countries are progressively removing the active substance from the shelves for domestic users while countries are debating national bans, stakeholder of the sugar industry across Europe are increasingly willing to be able to monitor glyphosate residues in their raw material, products and by-products to prevent any public health crisis or scandal that could be detrimental to their sector. Le glyphosate (N-(phosphonométhyl)glycine) est l’herbicide le plus utilisé au monde. Il présente tous les avantages de l’herbicide parfait : il est universel dans sa manière de cibler une enzyme présente dans tous les végétaux, les algues et de nombreux microorganismes ; mais pas les animaux, rendant sa toxicité aiguë très faible pour la faune et l’humain, sa mobilité dans les sols a longtemps été considérée négligeable, il est dégradé par la lumière ultraviolette (incluant la lumière solaire) et des bactéries communes dans les sols, il permet de limiter le labour et ainsi de favoriser la conservation des sols en réduisant l’érosion; et, par-dessus tout, il a aussi l’énorme avantage d’épargner les cultures résistantes génétiquement modifiées, fournissant un énorme avantage financier et permettant de réduire l’utilisation d’autres herbicides plus toxiques ainsi que l’empreinte carbone par la réduction de l’utilisation de machines agricoles. Cependant, le long débat sur sa cancérogénicité a été relancé en 2015 lorsque le Centre international de recherche sur le cancer a classé le glyphosate comme "potentiellement cancérigène pour l'homme" (catégorie 2A). Les effets chroniques du glyphosate et de son principal métabolite, l'acide aminométhylphosphonique (AMPA), (c'est-à-dire sa cancérogénicité, sa mutagénicité, son potentiel en tant que perturbateur endocrinien...) sont une réelle préoccupation sachant que le glyphosate est si largement utilisé qu'il a été démontré que les deux contaminants, et surtout l’AMPA qui est plus mobile, atteignent les nappes phréatiques et deviennent omniprésents dans les sols, les cours d'eau et les eaux usées. En effet, il a été démontré que la molécule est assez persistante dans l'eau et les sols dans un certain nombre de conditions de composition, de temps et de communautés bactériennes. La métabolisation du glyphosate dans les plantes est largement reconnue comme faible ou négligeable, ce qui suggère que les cultures génétiquement modifiées résistantes pourraient ainsi accumuler l'herbicide jusqu'à leur consommation. Enfin, quelques études et même des instances de l'Organisation mondiale de la santé ont commencé à suggérer que les effets négatifs du glyphosate sur la santé - notamment à travers les études sur les abeilles exposées à l'herbicide - pourraient être dus à son effet nocif supposé sur le microbiote intestinal bénéfique. Toutes ces considérations font de la surveillance précise du glyphosate et de l'AMPA dans l'environnement, l'eau potable et les produits alimentaires une priorité de santé publique et environnementale. L’analyse de routine de pesticides hautement polaires a toujours été difficile en chromatographie liquide compte tenu que ces composés ne sont pas compatibles avec l’extraction en phase solide QuEChERS associée à la chromatographie liquide en phase inverse, couramment utilisée en analyse multi-résidus, ni avec la chromatographie liquide en phase normale. Pourtant, de nombreux pesticides populaires font partie de cette catégorie, y compris le glyphosate et son métabolite, l’AMPA. Jusqu’à présent, les méthodes utilisées pour la quantification du glyphosate et de l’AMPA, impliquaient une étape de dérivatisation et des manipulations durant une journée entière pouvant être considérée comme fastidieuses. L’objectif de ce travail a été de développer une méthode rapide, peu coûteuse et efficace de détermination directe du glyphosate et de l’AMPA dans la betterave sucrière en utilisant une colonne de Chromatographie Liquide d’Interaction Hydrophile (HILIC) avec une phase stationnaire diéthylamine adaptée à la rétention et à la séparation de composés anioniques hautement polaires; sur la base de la méthode d’extraction QuPPe-PO des Laboratoires Européens de Référence pour les Méthodes monorésidus (EURL-SRM) et validée au regard des exigences en vigueur au BEAGx et dans les directives SANTE/12682/2019. La matrice choisie a été la betterave sucrière. Dans l'Union européenne, la culture de betteraves sucrières résistantes génétiquement modifiées n’est pas autorisée, le glyphosate est uniquement utilisé pour éliminer les mauvaises herbes avant les semis. Toutefois, aux États-Unis, presque toutes les betteraves sucrières cultivées sont des cultures OGM résistantes au glyphosate, traitées avec cet herbicide jusqu'à trois fois durant leur culture. L’importation, l’utilisation pour l'alimentation humaine et animale de celles-ci est autorisée dans l’U.E., ainsi que leurs produits dérivés et sous-produits. À mesure que l'opinion publique européenne sur le glyphosate se détériore, que les pays retirent progressivement la substances actives des rayons pour l’usage domestique et tandis que les pays débattent des interdictions nationales, les parties prenantes de l'industrie sucrière en Europe sont de plus en plus désireuses de pouvoir surveiller les résidus de glyphosate dans leurs matières premières et leurs produits et sous-produits afin d'éviter toute crise de santé publique ou tout scandale pouvant nuire à leur secteur.
Glyphosate --- AMPA --- Sugar beet --- HILIC --- Underivatized --- Liquid Chromatography --- MS/MS --- Tandem Mass Spectrometry --- Direct --- Direct analysis --- Underivatised --- LC --- LC-MS/MS --- QuPPe-PO --- Glyphosate --- AMPA --- Betterave sucrière --- HILIC --- Directe --- Sans Dérivatisation --- Chromatographie Liquide --- LC --- LC-MS/MS --- Spectrométrie de masse en tandem --- Analyse Directe --- QuPPe-PO --- Physique, chimie, mathématiques & sciences de la terre > Chimie --- Sciences du vivant > Sciences des denrées alimentaires
Choose an application
Food, by nature, is a biological substrate and is therefore capable of supporting the growth of microbials that are potential producers of toxic compounds. Among them mycotoxins, marine biotoxins, plant toxins, cyanogenic glycosides, and toxins occurring in poisonous mushrooms pose not only a risk to both human and animal health but also impact food security and nutrition by reducing people’s access to healthy food. This book collects some of the recent key improvements of analytical methodologies for the detection of natural toxins and their metabolites in food, and highlights the challenges yet to be resolved. Special emphasis is given to emerging or less-investigated toxins, to provide the scientific community with new tools and/or data supporting a better understanding of related food safety issues.
Research & information: general --- citreoviridin --- antibody --- immunoassay --- rice --- amatoxins --- amanitins --- monoclonal antibodies --- ELISA --- death cap mushrooms --- LC-MS --- pyrrolizidine alkaloid --- honey --- Parsonsia straminea --- lycopsamine --- indicine --- Heliotropium amplexicaule --- two dimensional layered nanomaterials --- electrochemical biosensors --- microbial toxin detection --- antibodies --- aptamers --- lateral flow immunoassay --- point-of-care --- mushroom poisoning --- oleandrin --- LC-MS/MS --- plant toxins --- validation --- herbs --- urine --- Aflatoxin M1 --- milk --- strip test immunoassay --- method validation --- CBA-N2a --- standardization --- matrix effects --- absorbance data --- ciguatoxins --- brevetoxins --- saxitoxins --- biological sample --- seafood safety --- citreoviridin --- antibody --- immunoassay --- rice --- amatoxins --- amanitins --- monoclonal antibodies --- ELISA --- death cap mushrooms --- LC-MS --- pyrrolizidine alkaloid --- honey --- Parsonsia straminea --- lycopsamine --- indicine --- Heliotropium amplexicaule --- two dimensional layered nanomaterials --- electrochemical biosensors --- microbial toxin detection --- antibodies --- aptamers --- lateral flow immunoassay --- point-of-care --- mushroom poisoning --- oleandrin --- LC-MS/MS --- plant toxins --- validation --- herbs --- urine --- Aflatoxin M1 --- milk --- strip test immunoassay --- method validation --- CBA-N2a --- standardization --- matrix effects --- absorbance data --- ciguatoxins --- brevetoxins --- saxitoxins --- biological sample --- seafood safety
Choose an application
Food, by nature, is a biological substrate and is therefore capable of supporting the growth of microbials that are potential producers of toxic compounds. Among them mycotoxins, marine biotoxins, plant toxins, cyanogenic glycosides, and toxins occurring in poisonous mushrooms pose not only a risk to both human and animal health but also impact food security and nutrition by reducing people’s access to healthy food. This book collects some of the recent key improvements of analytical methodologies for the detection of natural toxins and their metabolites in food, and highlights the challenges yet to be resolved. Special emphasis is given to emerging or less-investigated toxins, to provide the scientific community with new tools and/or data supporting a better understanding of related food safety issues.
Research & information: general --- citreoviridin --- antibody --- immunoassay --- rice --- amatoxins --- amanitins --- monoclonal antibodies --- ELISA --- death cap mushrooms --- LC-MS --- pyrrolizidine alkaloid --- honey --- Parsonsia straminea --- lycopsamine --- indicine --- Heliotropium amplexicaule --- two dimensional layered nanomaterials --- electrochemical biosensors --- microbial toxin detection --- antibodies --- aptamers --- lateral flow immunoassay --- point-of-care --- mushroom poisoning --- oleandrin --- LC-MS/MS --- plant toxins --- validation --- herbs --- urine --- Aflatoxin M1 --- milk --- strip test immunoassay --- method validation --- CBA-N2a --- standardization --- matrix effects --- absorbance data --- ciguatoxins --- brevetoxins --- saxitoxins --- biological sample --- seafood safety --- n/a
Choose an application
Food, by nature, is a biological substrate and is therefore capable of supporting the growth of microbials that are potential producers of toxic compounds. Among them mycotoxins, marine biotoxins, plant toxins, cyanogenic glycosides, and toxins occurring in poisonous mushrooms pose not only a risk to both human and animal health but also impact food security and nutrition by reducing people’s access to healthy food. This book collects some of the recent key improvements of analytical methodologies for the detection of natural toxins and their metabolites in food, and highlights the challenges yet to be resolved. Special emphasis is given to emerging or less-investigated toxins, to provide the scientific community with new tools and/or data supporting a better understanding of related food safety issues.
citreoviridin --- antibody --- immunoassay --- rice --- amatoxins --- amanitins --- monoclonal antibodies --- ELISA --- death cap mushrooms --- LC-MS --- pyrrolizidine alkaloid --- honey --- Parsonsia straminea --- lycopsamine --- indicine --- Heliotropium amplexicaule --- two dimensional layered nanomaterials --- electrochemical biosensors --- microbial toxin detection --- antibodies --- aptamers --- lateral flow immunoassay --- point-of-care --- mushroom poisoning --- oleandrin --- LC-MS/MS --- plant toxins --- validation --- herbs --- urine --- Aflatoxin M1 --- milk --- strip test immunoassay --- method validation --- CBA-N2a --- standardization --- matrix effects --- absorbance data --- ciguatoxins --- brevetoxins --- saxitoxins --- biological sample --- seafood safety --- n/a
Choose an application
Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.
Research & information: general --- Chemistry --- Analytical chemistry --- polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker --- polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker
Choose an application
Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.
Research & information: general --- Chemistry --- Analytical chemistry --- polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker
Choose an application
Metabolomics is increasingly being used to explore the dynamic responses of living systems in biochemical research. The complexity of the metabolome is outstanding, requiring the use of complementary analytical platforms and methods for its quantitative or qualitative profiling. In alignment with the selected analytical approach and the study aim, sample collection and preparation are critical steps that must be carefully selected and optimized to generate high-quality metabolomic data. This book showcases some of the most recent developments in the field of sample preparation for metabolomics studies. Novel technologies presented include electromembrane extraction of polar metabolites from plasma samples and guidelines for the preparation of biospecimens for the analysis with high-resolution μ magic-angle spinning nuclear magnetic resonance (HR-μMAS NMR). In the following chapters, the spotlight is on sample preparation approaches that have been optimized for diverse bioanalytical applications, including the analysis of cell lines, bacteria, single spheroids, extracellular vesicles, human milk, plant natural products and forest trees.
metabolomics --- sample preparation --- hydrophilic interaction liquid chromatography --- ion mobility spectrometry --- high resolution mass spectrometry --- design of experiments --- AMOPLS --- metabonomics --- metabolic profiling --- NMR --- nuclear magnetic resonance spectroscopy --- cell line --- human cell line --- MiaPaCa-2 --- Panc-1 --- AsPC-1 --- extracellular vesicles --- exosomes --- microvesicles --- biomarkers --- diagnostics --- metabolic pathways --- plant metabolomics --- forestry --- trees --- mass spectrometry --- metabolite extraction --- GC-MS --- LC-MS --- metadata standardization --- databases --- multicellular tumor spheroids --- metallodrugs --- oxaliplatin --- KP1339 --- method development --- IT-139 --- 20% FCS --- harvesting --- extraction --- metabolites --- normalization --- electromembrane extraction --- cardiovascular disease --- multi-segment injection --- capillary electrophoresis–mass spectrometry --- liquid chromatography–mass spectrometry --- plant natural products --- drug discovery --- liquid chromatography --- gas chromatography --- human milk --- metabolome --- sampling --- liquid chromatography–mass spectrometry (LC-MS) --- nuclear magnetic resonance (NMR) --- gas chromatography–mass spectrometry (GC-MS) --- capillary electrophoresis—mass spectrometry (CE-MS) --- high-resolution magic angle spinning --- microscopic samples --- lipidomics --- LC-MS/MS --- human plasma
Choose an application
Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.
polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker
Listing 1 - 10 of 142 | << page >> |
Sort by
|