Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Intended for researchers in Riemann surfaces, this volume summarizes a significant portion of the work done in the field during the years 1966 to 1971.
Riemann surfaces --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Surfaces, Riemann --- Functions --- Congresses --- Differential geometry. Global analysis --- RIEMANN SURFACES --- congresses --- Congresses. --- MATHEMATICS / Calculus. --- Affine space. --- Algebraic function field. --- Algebraic structure. --- Analytic continuation. --- Analytic function. --- Analytic set. --- Automorphic form. --- Automorphic function. --- Automorphism. --- Beltrami equation. --- Bernhard Riemann. --- Boundary (topology). --- Canonical basis. --- Cartesian product. --- Clifford's theorem. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Complex multiplication. --- Conformal geometry. --- Conformal map. --- Coset. --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential geometry of surfaces. --- Dimension (vector space). --- Dirichlet boundary condition. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein series. --- Euclidean space. --- Existential quantification. --- Explicit formulae (L-function). --- Exterior (topology). --- Finsler manifold. --- Fourier series. --- Fuchsian group. --- Function (mathematics). --- Generating set of a group. --- Group (mathematics). --- Hilbert space. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Hyperbolic geometry. --- Hyperbolic group. --- Identity matrix. --- Infimum and supremum. --- Inner automorphism. --- Intersection (set theory). --- Intersection number (graph theory). --- Isometry. --- Isomorphism class. --- Isomorphism theorem. --- Kleinian group. --- Limit point. --- Limit set. --- Linear map. --- Lorentz group. --- Mapping class group. --- Mathematical induction. --- Mathematics. --- Matrix (mathematics). --- Matrix multiplication. --- Measure (mathematics). --- Meromorphic function. --- Metric space. --- Modular group. --- Möbius transformation. --- Number theory. --- Osgood curve. --- Parity (mathematics). --- Partial isometry. --- Poisson summation formula. --- Pole (complex analysis). --- Projective space. --- Quadratic differential. --- Quadratic form. --- Quasiconformal mapping. --- Quotient space (linear algebra). --- Quotient space (topology). --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Riemann zeta function. --- Scalar multiplication. --- Scientific notation. --- Selberg trace formula. --- Series expansion. --- Sign (mathematics). --- Square-integrable function. --- Subgroup. --- Teichmüller space. --- Theorem. --- Topological manifold. --- Topological space. --- Uniformization. --- Unit disk. --- Variable (mathematics). --- Riemann, Surfaces de --- RIEMANN SURFACES - congresses --- Fonctions d'une variable complexe --- Surfaces de riemann
Choose an application
Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.
Group theory --- Complex analysis --- Number theory --- RIEMANN SURFACES --- Discontinuous groups --- congresses --- Congresses --- Riemann surfaces --- Congresses. --- Groupes discontinus --- Combinatorial topology --- Functions of complex variables --- Surfaces, Riemann --- Functions --- Abelian variety. --- Adjunction (field theory). --- Affine space. --- Algebraic curve. --- Algebraic structure. --- Analytic function. --- Arithmetic genus. --- Automorphism. --- Bernhard Riemann. --- Boundary (topology). --- Cauchy sequence. --- Cauchy–Schwarz inequality. --- Cayley–Hamilton theorem. --- Closed geodesic. --- Combination. --- Commutative diagram. --- Commutator subgroup. --- Compact Riemann surface. --- Complex dimension. --- Complex manifold. --- Complex multiplication. --- Complex space. --- Complex torus. --- Congruence subgroup. --- Conjugacy class. --- Convex set. --- Cyclic group. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Dimension (vector space). --- Disjoint sets. --- E7 (mathematics). --- Endomorphism. --- Equation. --- Equivalence class. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Finite group. --- Finitely generated group. --- Fuchsian group. --- Fundamental domain. --- Fundamental lemma (Langlands program). --- Fundamental polygon. --- Galois extension. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Hurwitz's theorem (number theory). --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Irreducibility (mathematics). --- Isomorphism class. --- Isomorphism theorem. --- Jacobian variety. --- Jordan curve theorem. --- Kleinian group. --- Limit point. --- Mapping class group. --- Metric space. --- Monodromy. --- Monomorphism. --- Möbius transformation. --- Non-Euclidean geometry. --- Orthogonal trajectory. --- Permutation. --- Polynomial. --- Power series. --- Projective variety. --- Quadratic differential. --- Quadric. --- Quasi-projective variety. --- Quasiconformal mapping. --- Quotient space (topology). --- Rectangle. --- Riemann mapping theorem. --- Riemann surface. --- Schwarzian derivative. --- Simply connected space. --- Simultaneous equations. --- Special case. --- Subgroup. --- Subsequence. --- Surjective function. --- Symmetric space. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological space. --- Topology. --- Uniqueness theorem. --- Unit disk. --- Variable (mathematics). --- Winding number. --- Word problem (mathematics). --- RIEMANN SURFACES - congresses --- Discontinuous groups - Congresses --- Geometrie algebrique --- Fonctions d'une variable complexe --- Surfaces de riemann
Choose an application
William Thurston (1946–2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of mathematical fields, from foliations, contact structures, and Teichmüller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. What's Next? brings together many of today's leading mathematicians to describe recent advances and future directions inspired by Thurston's transformative ideas.Including valuable insights from his colleagues and former students, What's Next? discusses Thurston's fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. This incisive and wide-ranging book also explores how he introduced new ways of thinking about and doing mathematics, innovations that have had a profound and lasting impact on the mathematical community as a whole.
Dynamics. --- Geometry. --- Topology. --- MATHEMATICS / General. --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Mathematics --- Euclid's Elements --- Dynamical systems --- Kinetics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Thurston, William P., --- Thurston, W. P. --- Arbitrarily large. --- Asymptotic expansion. --- Automorphism. --- Big O notation. --- Braid group. --- Branch point. --- Central series. --- Character variety. --- Characterization (mathematics). --- Cohomology operation. --- Cohomology. --- Commutative property. --- Conjecture. --- Conjugacy class. --- Convex hull. --- Covering space. --- Coxeter group. --- Curvature. --- Dehn's lemma. --- Diagram (category theory). --- Disjoint union. --- Eigenfunction. --- Endomorphism. --- Epimorphism. --- Equivalence class. --- Equivalence relation. --- Euclidean space. --- Extreme point. --- Faithful representation. --- Fiber bundle. --- Free group. --- Free product. --- Fundamental group. --- Geometrization conjecture. --- HNN extension. --- Haar measure. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypercube. --- I0. --- Inclusion map. --- Incompressible surface. --- JSJ decomposition. --- Jordan curve theorem. --- Julia set. --- Klein bottle. --- Kleinian group. --- Lebesgue measure. --- Leech lattice. --- Limit point. --- Lyapunov exponent. --- Mahler measure. --- Manifold decomposition. --- Mapping cylinder. --- Marriage theorem. --- Maxima and minima. --- Moduli space. --- Möbius strip. --- Möbius transformation. --- Natural topology. --- Non-Euclidean geometry. --- Non-positive curvature. --- Normal subgroup. --- Open set. --- Orientability. --- Pair of pants (mathematics). --- Perfect group. --- Pleated surface. --- Polynomial. --- Preorder. --- Probability measure. --- Pullback (category theory). --- Pullback (differential geometry). --- Quadric. --- Quasi-isometry. --- Quasiconvex function. --- Rectangle. --- Riemann surface. --- Riemannian manifold. --- Saddle point. --- Sectional curvature. --- Sign (mathematics). --- Simple algebra. --- Simply connected space. --- Special case. --- Subgroup. --- Subset. --- Symplectic geometry. --- Theorem. --- Total order. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector bundle.
Choose an application
The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.
Minimal submanifolds. --- A priori estimate. --- Analytic function. --- Banach space. --- Boundary (topology). --- Boundary value problem. --- Bounded set (topological vector space). --- Branch point. --- Cauchy–Riemann equations. --- Center manifold. --- Closed geodesic. --- Codimension. --- Coefficient. --- Cohomology. --- Compactness theorem. --- Comparison theorem. --- Configuration space. --- Conformal geometry. --- Conformal group. --- Conformal map. --- Continuous function. --- Cross product. --- Curve. --- Degeneracy (mathematics). --- Diffeomorphism. --- Differential form. --- Dirac operator. --- Discrete group. --- Divergence theorem. --- Eigenvalues and eigenvectors. --- Elementary proof. --- Equation. --- Existence theorem. --- Existential quantification. --- Exterior derivative. --- First variation. --- Free boundary problem. --- Fundamental group. --- Gauss map. --- Geodesic. --- Geometry. --- Group action. --- Hamiltonian mechanics. --- Harmonic function. --- Harmonic map. --- Hausdorff dimension. --- Hausdorff measure. --- Homotopy group. --- Homotopy. --- Hurewicz theorem. --- Hyperbolic 3-manifold. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Implicit function theorem. --- Infimum and supremum. --- Injective function. --- Inner automorphism. --- Isolated singularity. --- Isometry group. --- Isoperimetric problem. --- Klein bottle. --- Kleinian group. --- Limit set. --- Lipschitz continuity. --- Mapping class group. --- Maxima and minima. --- Maximum principle. --- Minimal surface of revolution. --- Minimal surface. --- Monotonic function. --- Möbius transformation. --- Norm (mathematics). --- Orthonormal basis. --- Parametric surface. --- Periodic function. --- Poincaré conjecture. --- Projection (linear algebra). --- Regularity theorem. --- Riemann surface. --- Riemannian manifold. --- Schwarz reflection principle. --- Second fundamental form. --- Semi-continuity. --- Simply connected space. --- Special case. --- Stein's lemma. --- Subalgebra. --- Subgroup. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Symplectic manifold. --- Tangent space. --- Teichmüller space. --- Theorem. --- Trace (linear algebra). --- Uniformization. --- Uniqueness theorem. --- Variational principle. --- Yamabe problem.
Choose an application
The description for this book, Riemann Surfaces Related Topics (AM-97), Volume 97: Proceedings of the 1978 Stony Brook Conference. (AM-97), will be forthcoming.
Geometry --- Riemann surfaces --- -517.54 --- Surfaces, Riemann --- Functions --- Congresses --- Conformal mapping and geometric problems in the theory of functions of a complex variable. Analytic functions and their generalizations --- 517.54 Conformal mapping and geometric problems in the theory of functions of a complex variable. Analytic functions and their generalizations --- 517.54 --- Riemann, Surfaces de --- Abstract simplicial complex. --- Affine transformation. --- Algebraic curve. --- Algebraic element. --- Algebraic equation. --- Algebraic surface. --- Analytic function. --- Analytic torsion. --- Automorphic form. --- Automorphic function. --- Automorphism. --- Banach space. --- Basis (linear algebra). --- Boundary (topology). --- Bounded set (topological vector space). --- Cohomology ring. --- Cohomology. --- Commutative property. --- Commutator subgroup. --- Compact Riemann surface. --- Complex analysis. --- Complex manifold. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Covering space. --- Diagram (category theory). --- Dimension (vector space). --- Divisor (algebraic geometry). --- Divisor. --- Eigenvalues and eigenvectors. --- Equivalence class. --- Equivalence relation. --- Ergodic theory. --- Existential quantification. --- Foliation. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental polygon. --- Geodesic. --- Geometric function theory. --- Group homomorphism. --- H-cobordism. --- Hausdorff measure. --- Holomorphic function. --- Homeomorphism. --- Homomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic manifold. --- Hyperbolic space. --- Infimum and supremum. --- Injective module. --- Interior (topology). --- Intersection form (4-manifold). --- Isometry. --- Isomorphism class. --- Jordan curve theorem. --- Kleinian group. --- Kähler manifold. --- Limit point. --- Limit set. --- Manifold. --- Meromorphic function. --- Metric space. --- Mostow rigidity theorem. --- Möbius transformation. --- Poincaré conjecture. --- Pole (complex analysis). --- Polynomial. --- Product topology. --- Projective variety. --- Quadratic differential. --- Quasi-isometry. --- Quasiconformal mapping. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Ricci curvature. --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Schwarzian derivative. --- Strictly convex space. --- Subgroup. --- Submanifold. --- Surjective function. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological conjugacy. --- Topological space. --- Topology. --- Uniformization theorem. --- Uniformization. --- Uniqueness theorem. --- Unit disk. --- Vector bundle.
Choose an application
Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.
Differential dynamical systems --- Drie-menigvuldigheden (Topologie) --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Differentiable dynamical systems. --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Low-dimensional topology --- Topological manifolds --- Algebraic topology. --- Analytic continuation. --- Automorphism. --- Beltrami equation. --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Circular symmetry. --- Combinatorics. --- Compact space. --- Complex conjugate. --- Complex manifold. --- Complex number. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Convex hull. --- Covering space. --- Deformation theory. --- Degeneracy (mathematics). --- Dimension (vector space). --- Disk (mathematics). --- Dynamical system. --- Eigenvalues and eigenvectors. --- Factorization. --- Fiber bundle. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental solution. --- G-module. --- Geodesic. --- Geometry. --- Harmonic analysis. --- Hausdorff dimension. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Infimum and supremum. --- Injective function. --- Intersection (set theory). --- Invariant subspace. --- Isometry. --- Julia set. --- Kleinian group. --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Mapping class group. --- Measure (mathematics). --- Moduli (physics). --- Moduli space. --- Modulus of continuity. --- Möbius transformation. --- N-sphere. --- Newton's method. --- Permutation. --- Point at infinity. --- Polynomial. --- Quadratic function. --- Quasi-isometry. --- Quasiconformal mapping. --- Quasisymmetric function. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Renormalization. --- Representation of a Lie group. --- Representation theory. --- Riemann sphere. --- Riemann surface. --- Riemannian manifold. --- Schwarz lemma. --- Simply connected space. --- Special case. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Tangent space. --- Teichmüller space. --- Theorem. --- Topology of uniform convergence. --- Topology. --- Trace (linear algebra). --- Transversal (geometry). --- Transversality (mathematics). --- Triangle inequality. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector field. --- Differentiable dynamical systems --- 515.16 --- 515.16 Topology of manifolds --- Topology of manifolds
Listing 1 - 6 of 6 |
Sort by
|