Listing 1 - 2 of 2 |
Sort by
|
Choose an application
One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. This book takes an important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes - or Schwarzschild spacetimes - under so-called polarized perturbations.
Perturbation (Mathematics) --- Schwarzschild black holes. --- Static black holes --- Black holes (Astronomy) --- Perturbation equations --- Perturbation theory --- Approximation theory --- Dynamics --- Functional analysis --- Mathematical physics --- Perturbation (Astronomy) --- Celestial mechanics --- Bianchi identities. --- Hawking mass. --- Kerr metric. --- Morawetz estimates. --- Reege-Wheeler equations. --- Ricci coefficients. --- Theorem M0. --- asymptotic stability. --- cosmic censorship. --- curvature components. --- decay estimates. --- extreme curvature components. --- general covariance. --- general null frame transformations. --- general theory of relativity. --- geometric analysis. --- invariant quantities. --- mathematical physics, differential geometry. --- molecular orbital theory. --- null structure. --- partial differential equations. --- polarized symmetry. --- space-time.
Choose an application
Dive into a mind-bending exploration of the physics of black holesBlack holes, predicted by Albert Einstein's general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality-a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research-and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction.After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical "laboratories" in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories' detection of the distinctive gravitational wave "chirp" of two colliding black holes-the first direct observation of black holes' existence.The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.
Black holes (Astronomy) --- Frozen stars --- Compact objects (Astronomy) --- Gravitational collapse --- Stars --- A-frame. --- Acceleration. --- Accretion disk. --- Alice and Bob. --- Angular momentum. --- Astronomer. --- Atomic nucleus. --- Binary black hole. --- Binary star. --- Black hole information paradox. --- Black hole thermodynamics. --- Black hole. --- Calculation. --- Circular orbit. --- Classical mechanics. --- Closed timelike curve. --- Cosmological constant. --- Curvature. --- Cygnus X-1. --- Degenerate matter. --- Differential equation. --- Differential geometry. --- Doppler effect. --- Earth. --- Einstein field equations. --- Electric charge. --- Electric field. --- Electromagnetism. --- Ergosphere. --- Escape velocity. --- Event horizon. --- Excitation (magnetic). --- Frame-dragging. --- Galactic Center. --- General relativity. --- Gravitational acceleration. --- Gravitational collapse. --- Gravitational constant. --- Gravitational energy. --- Gravitational field. --- Gravitational redshift. --- Gravitational wave. --- Gravitational-wave observatory. --- Gravity. --- Hawking radiation. --- Inner core. --- Kerr metric. --- Kinetic energy. --- LIGO. --- Length contraction. --- Lorentz transformation. --- Magnetic field. --- Mass–energy equivalence. --- Maxwell's equations. --- Metric expansion of space. --- Metric tensor. --- Milky Way. --- Minkowski space. --- Negative energy. --- Neutrino. --- Neutron star. --- Neutron. --- Newton's law of universal gravitation. --- No-hair theorem. --- Nuclear fusion. --- Nuclear reaction. --- Orbit. --- Orbital mechanics. --- Orbital period. --- Penrose process. --- Photon. --- Physicist. --- Primordial black hole. --- Projectile. --- Quantum entanglement. --- Quantum gravity. --- Quantum mechanics. --- Quantum state. --- Quasar. --- Ray (optics). --- Rotational energy. --- Roy Kerr. --- Schwarzschild metric. --- Schwarzschild radius. --- Solar mass. --- Special relativity. --- Star. --- Stellar mass. --- Stephen Hawking. --- Stress–energy tensor. --- String theory. --- Supermassive black hole. --- Temperature. --- Theory of relativity. --- Thought experiment. --- Tidal force. --- Time dilation. --- Wavelength. --- White hole. --- Wormhole.
Listing 1 - 2 of 2 |
Sort by
|