Narrow your search

Library

KU Leuven (1)

UGent (1)

UHasselt (1)

VUB (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2014 (1)

1993 (1)

Listing 1 - 2 of 2
Sort by
Introduction to toric varieties
Author:
ISBN: 0691000492 0691033323 1400882524 Year: 1993 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories.The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Keywords

Algebraic geometry --- Differential geometry. Global analysis --- 512.7 --- Algebraic geometry. Commutative rings and algebras --- Toric varieties. --- 512.7 Algebraic geometry. Commutative rings and algebras --- Toric varieties --- Embeddings, Torus --- Torus embeddings --- Varieties, Toric --- Algebraic varieties --- Addition. --- Affine plane. --- Affine space. --- Affine variety. --- Alexander Grothendieck. --- Alexander duality. --- Algebraic curve. --- Algebraic group. --- Atiyah–Singer index theorem. --- Automorphism. --- Betti number. --- Big O notation. --- Characteristic class. --- Chern class. --- Chow group. --- Codimension. --- Cohomology. --- Combinatorics. --- Commutative property. --- Complete intersection. --- Convex polytope. --- Convex set. --- Coprime integers. --- Cotangent space. --- Dedekind sum. --- Dimension (vector space). --- Dimension. --- Direct proof. --- Discrete valuation ring. --- Discrete valuation. --- Disjoint union. --- Divisor (algebraic geometry). --- Divisor. --- Dual basis. --- Dual space. --- Equation. --- Equivalence class. --- Equivariant K-theory. --- Euler characteristic. --- Exact sequence. --- Explicit formula. --- Facet (geometry). --- Fundamental group. --- Graded ring. --- Grassmannian. --- H-vector. --- Hirzebruch surface. --- Hodge theory. --- Homogeneous coordinates. --- Homomorphism. --- Hypersurface. --- Intersection theory. --- Invertible matrix. --- Invertible sheaf. --- Isoperimetric inequality. --- Lattice (group). --- Leray spectral sequence. --- Limit point. --- Line bundle. --- Line segment. --- Linear subspace. --- Local ring. --- Mathematical induction. --- Mixed volume. --- Moduli space. --- Moment map. --- Monotonic function. --- Natural number. --- Newton polygon. --- Open set. --- Picard group. --- Pick's theorem. --- Polytope. --- Projective space. --- Quadric. --- Quotient space (topology). --- Regular sequence. --- Relative interior. --- Resolution of singularities. --- Restriction (mathematics). --- Resultant. --- Riemann–Roch theorem. --- Serre duality. --- Sign (mathematics). --- Simplex. --- Simplicial complex. --- Simultaneous equations. --- Spectral sequence. --- Subgroup. --- Subset. --- Summation. --- Surjective function. --- Tangent bundle. --- Theorem. --- Topology. --- Toric variety. --- Unit disk. --- Vector space. --- Weil conjecture. --- Zariski topology.


Book
The Global Nonlinear Stability of the Minkowski Space (PMS-41)
Authors: ---
ISBN: 9781400863174 1400863171 0691632553 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter.Originally published in 1994.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Space and time --- Generalized spaces --- Nonlinear theories --- Physics --- Physical Sciences & Mathematics --- Atomic Physics --- Nonlinear problems --- Nonlinearity (Mathematics) --- Calculus --- Mathematical analysis --- Mathematical physics --- Geometry of paths --- Minkowski space --- Spaces, Generalized --- Weyl space --- Calculus of tensors --- Geometry, Differential --- Geometry, Non-Euclidean --- Hyperspace --- Relativity (Physics) --- Space of more than three dimensions --- Space-time --- Space-time continuum --- Space-times --- Spacetime --- Time and space --- Fourth dimension --- Infinite --- Metaphysics --- Philosophy --- Space sciences --- Time --- Beginning --- Mathematics --- Angular momentum operator. --- Asymptotic analysis. --- Asymptotic expansion. --- Big O notation. --- Boundary value problem. --- Cauchy–Riemann equations. --- Coarea formula. --- Coefficient. --- Compactification (mathematics). --- Comparison theorem. --- Corollary. --- Covariant derivative. --- Curvature tensor. --- Curvature. --- Cut locus (Riemannian manifold). --- Degeneracy (mathematics). --- Degrees of freedom (statistics). --- Derivative. --- Diffeomorphism. --- Differentiable function. --- Eigenvalues and eigenvectors. --- Eikonal equation. --- Einstein field equations. --- Equation. --- Error term. --- Estimation. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Exponential map (Lie theory). --- Exponential map (Riemannian geometry). --- Exterior (topology). --- Foliation. --- Fréchet derivative. --- Geodesic curvature. --- Geodesic. --- Geodesics in general relativity. --- Geometry. --- Hodge dual. --- Homotopy. --- Hyperbolic partial differential equation. --- Hypersurface. --- Hölder's inequality. --- Identity (mathematics). --- Infinitesimal generator (stochastic processes). --- Integral curve. --- Intersection (set theory). --- Isoperimetric inequality. --- Laplace's equation. --- Lie algebra. --- Lie derivative. --- Linear equation. --- Linear map. --- Logarithm. --- Lorentz group. --- Lp space. --- Mass formula. --- Mean curvature. --- Metric tensor. --- Minkowski space. --- Nonlinear system. --- Normal (geometry). --- Null hypersurface. --- Orthonormal basis. --- Partial derivative. --- Poisson's equation. --- Projection (linear algebra). --- Quantity. --- Radial function. --- Ricci curvature. --- Riemann curvature tensor. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Sard's theorem. --- Scalar (physics). --- Scalar curvature. --- Scale invariance. --- Schwarzschild metric. --- Second derivative. --- Second fundamental form. --- Sobolev inequality. --- Sobolev space. --- Stokes formula. --- Stokes' theorem. --- Stress–energy tensor. --- Symmetric tensor. --- Symmetrization. --- Tangent space. --- Tensor product. --- Theorem. --- Trace (linear algebra). --- Transversal (geometry). --- Triangle inequality. --- Uniformization theorem. --- Unit sphere. --- Vector field. --- Volume element. --- Wave equation. --- Weyl tensor.

Listing 1 - 2 of 2
Sort by