Listing 1 - 5 of 5 |
Sort by
|
Choose an application
In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic.
Linear algebraic groups. --- Group theory. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Groups, Theory of --- Substitutions (Mathematics) --- Algebra --- Algebraic groups, Linear --- Geometry, Algebraic --- Group theory --- Algebraic varieties --- "ient homomorphism. --- Cartan k-subgroup. --- Dynkin diagram. --- Isogeny Theorem. --- Isomorphism Theorem. --- Levi subgroup. --- SeveriЂrauer variety. --- Tits classification. --- Tits-style classification. --- Weil restriction. --- algebraic geometry. --- automorphism functor. --- automorphism scheme. --- automorphism. --- canonical central extensions. --- central "ient. --- central extension. --- characteristic 2. --- conformal isometry. --- degenerate quadratic form. --- double bond. --- exotic construction. --- field-theoretic invariant. --- generalized exotic group. --- generalized standard group. --- generalized standard presentation. --- generalized standard. --- isomorphism class. --- isomorphism. --- isotropic group. --- k-tame central extension. --- linear isomorphism. --- linear-algebraic invariant. --- maximal torus. --- minimal type. --- non-reduced root system. --- number theory. --- pseudo-isogeny. --- pseudo-reductive group. --- pseudo-semisimple group. --- pseudo-simple group. --- pseudo-simple k-group. --- pseudo-split form. --- pseudo-split. --- quadratic space. --- quadrics. --- rank-1. --- rank-2. --- rigidity property. --- root field. --- root system. --- scheme-theoretic center. --- semisimple "ient. --- semisimple k-group. --- structure theorem.
Choose an application
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
p-adic groups --- p-divisible groups --- Moduli theory --- 512.7 --- Theory of moduli --- Analytic spaces --- Functions of several complex variables --- Geometry, Algebraic --- Groups, p-divisible --- Group schemes (Mathematics) --- Groups, p-adic --- Group theory --- Algebraic geometry. Commutative rings and algebras --- 512.7 Algebraic geometry. Commutative rings and algebras --- p-divisible groups. --- Moduli theory. --- p-adic groups. --- Abelian variety. --- Addition. --- Alexander Grothendieck. --- Algebraic closure. --- Algebraic number field. --- Algebraic space. --- Algebraically closed field. --- Artinian ring. --- Automorphism. --- Base change. --- Basis (linear algebra). --- Big O notation. --- Bilinear form. --- Canonical map. --- Cohomology. --- Cokernel. --- Commutative algebra. --- Commutative ring. --- Complex multiplication. --- Conjecture. --- Covering space. --- Degenerate bilinear form. --- Diagram (category theory). --- Dimension (vector space). --- Dimension. --- Duality (mathematics). --- Elementary function. --- Epimorphism. --- Equation. --- Existential quantification. --- Fiber bundle. --- Field of fractions. --- Finite field. --- Formal scheme. --- Functor. --- Galois group. --- General linear group. --- Geometric invariant theory. --- Hensel's lemma. --- Homomorphism. --- Initial and terminal objects. --- Inner automorphism. --- Integral domain. --- Irreducible component. --- Isogeny. --- Isomorphism class. --- Linear algebra. --- Linear algebraic group. --- Local ring. --- Local system. --- Mathematical induction. --- Maximal ideal. --- Maximal torus. --- Module (mathematics). --- Moduli space. --- Monomorphism. --- Morita equivalence. --- Morphism. --- Multiplicative group. --- Noetherian ring. --- Open set. --- Orthogonal basis. --- Orthogonal complement. --- Orthonormal basis. --- P-adic number. --- Parity (mathematics). --- Period mapping. --- Prime element. --- Prime number. --- Projective line. --- Projective space. --- Quaternion algebra. --- Reductive group. --- Residue field. --- Rigid analytic space. --- Semisimple algebra. --- Sheaf (mathematics). --- Shimura variety. --- Special case. --- Subalgebra. --- Subgroup. --- Subset. --- Summation. --- Supersingular elliptic curve. --- Support (mathematics). --- Surjective function. --- Symmetric bilinear form. --- Symmetric space. --- Tate module. --- Tensor algebra. --- Tensor product. --- Theorem. --- Topological ring. --- Topology. --- Torsor (algebraic geometry). --- Uniformization theorem. --- Uniformization. --- Unitary group. --- Weil group. --- Zariski topology.
Choose an application
Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures-which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria-provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach.The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces.The second course, taught by Umberto Zannier, addresses the famous Pell equation-not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians.The third course, taught by Shou-Wu Zhang, originates in the Chowla-Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross-Zagier formula on Shimura curves and verify the Colmez conjecture on average.
Arithmetical algebraic geometry. --- Algebraic geometry, Arithmetical --- Arithmetic algebraic geometry --- Diophantine geometry --- Geometry, Arithmetical algebraic --- Geometry, Diophantine --- Number theory --- Abelian variety. --- Algebraic geometry. --- Algebraic independence. --- Algebraic space. --- Analytic number theory. --- Arbitrarily large. --- Automorphic form. --- Automorphism. --- Base change. --- Big O notation. --- Class number formula. --- Cohomology. --- Complex multiplication. --- Computation. --- Conjecture. --- Conjugacy class. --- Continued fraction. --- Cusp form. --- Diagram (category theory). --- Dimension. --- Diophantine equation. --- Diophantine geometry. --- Discriminant. --- Divisible group. --- Double coset. --- Eisenstein series. --- Endomorphism. --- Equation. --- Existential quantification. --- Exponential map (Riemannian geometry). --- Fiber bundle. --- Floor and ceiling functions. --- Formal group. --- Formal power series. --- Formal scheme. --- Fundamental group. --- Geometric Langlands correspondence. --- Geometry. --- Heegner point. --- Hodge structure. --- Hodge theory. --- Homomorphism. --- I0. --- Integer. --- Intersection number. --- Irreducible component. --- Isogeny. --- Isomorphism class. --- Jacobian variety. --- L-function. --- Langlands dual group. --- Laurent series. --- Linear combination. --- Local system. --- Logarithmic derivative. --- Logarithmic form. --- Mathematics. --- Modular form. --- Moduli space. --- Monotonic function. --- Natural topology. --- P-adic analysis. --- P-adic number. --- Pell's equation. --- Perverse sheaf. --- Polylogarithm. --- Polynomial. --- Power series. --- Presheaf (category theory). --- Prime number. --- Projective space. --- Quaternion algebra. --- Rational point. --- Real number. --- Reductive group. --- Rigid analytic space. --- Roth's theorem. --- Series expansion. --- Shafarevich conjecture. --- Sheaf (mathematics). --- Shimura variety. --- Siegel zero. --- Special case. --- Stack (mathematics). --- Subset. --- Summation. --- Szpiro's conjecture. --- Tate conjecture. --- Tate module. --- Taylor series. --- Theorem. --- Theta function. --- Topological ring. --- Topology. --- Torsor (algebraic geometry). --- Upper and lower bounds. --- Vector bundle. --- Weil group. --- Witt vector. --- Zariski topology.
Choose an application
This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "corresponding" situations, which provide a systematic explanation of the remarkable "coincidences" found "by hand" in the hypergeometric case.
Exponential sums. --- Differential equations. --- Adjoint representation. --- Algebraic geometry. --- Algebraic integer. --- Algebraically closed field. --- Automorphism. --- Base change. --- Bernard Dwork. --- Big O notation. --- Bijection. --- Calculation. --- Characteristic polynomial. --- Codimension. --- Coefficient. --- Cohomology. --- Comparison theorem. --- Complex manifold. --- Conjugacy class. --- Connected component (graph theory). --- Convolution. --- Determinant. --- Diagram (category theory). --- Differential Galois theory. --- Differential equation. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Divisor. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Equation. --- Euler characteristic. --- Existential quantification. --- Exponential sum. --- Fiber bundle. --- Field of fractions. --- Finite field. --- Formal power series. --- Fourier transform. --- Fundamental group. --- Fundamental representation. --- Galois extension. --- Galois group. --- Gauss sum. --- Generic point. --- Group theory. --- Homomorphism. --- Hypergeometric function. --- Identity component. --- Identity element. --- Integer. --- Irreducibility (mathematics). --- Irreducible representation. --- Isogeny. --- Isomorphism class. --- L-function. --- Laurent polynomial. --- Lie algebra. --- Logarithm. --- Mathematical induction. --- Matrix coefficient. --- Maximal compact subgroup. --- Maximal torus. --- Mellin transform. --- Monic polynomial. --- Monodromy theorem. --- Monodromy. --- Monomial. --- Natural number. --- Normal subgroup. --- P-adic number. --- Permutation. --- Polynomial. --- Prime number. --- Pullback. --- Quotient group. --- Reductive group. --- Regular singular point. --- Representation theory. --- Ring homomorphism. --- Root of unity. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Special case. --- Subcategory. --- Subgroup. --- Subring. --- Subset. --- Summation. --- Surjective function. --- Symmetric group. --- Tensor product. --- Theorem. --- Theory. --- Three-dimensional space (mathematics). --- Torsor (algebraic geometry). --- Trichotomy (mathematics). --- Unitarian trick. --- Unitary group. --- Variable (mathematics).
Choose an application
An elliptic curve is a particular kind of cubic equation in two variables whose projective solutions form a group. Modular forms are analytic functions in the upper half plane with certain transformation laws and growth properties. The two subjects--elliptic curves and modular forms--come together in Eichler-Shimura theory, which constructs elliptic curves out of modular forms of a special kind. The converse, that all rational elliptic curves arise this way, is called the Taniyama-Weil Conjecture and is known to imply Fermat's Last Theorem. Elliptic curves and the modeular forms in the Eichler- Shimura theory both have associated L functions, and it is a consequence of the theory that the two kinds of L functions match. The theory covered by Anthony Knapp in this book is, therefore, a window into a broad expanse of mathematics--including class field theory, arithmetic algebraic geometry, and group representations--in which the concidence of L functions relates analysis and algebra in the most fundamental ways. Developing, with many examples, the elementary theory of elliptic curves, the book goes on to the subject of modular forms and the first connections with elliptic curves. The last two chapters concern Eichler-Shimura theory, which establishes a much deeper relationship between the two subjects. No other book in print treats the basic theory of elliptic curves with only undergraduate mathematics, and no other explains Eichler-Shimura theory in such an accessible manner.
Curves, Elliptic. --- Affine plane (incidence geometry). --- Affine space. --- Affine variety. --- Algebra homomorphism. --- Algebraic extension. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number theory. --- Algebraic number. --- Analytic continuation. --- Analytic function. --- Associative algebra. --- Automorphism. --- Big O notation. --- Binary quadratic form. --- Birch and Swinnerton-Dyer conjecture. --- Bounded set (topological vector space). --- Change of variables. --- Characteristic polynomial. --- Coefficient. --- Compactification (mathematics). --- Complex conjugate. --- Complex manifold. --- Complex number. --- Conjecture. --- Coprime integers. --- Cusp form. --- Cyclic group. --- Degeneracy (mathematics). --- Dimension (vector space). --- Dirichlet character. --- Dirichlet series. --- Division algebra. --- Divisor. --- Eigenform. --- Eigenvalues and eigenvectors. --- Elementary symmetric polynomial. --- Elliptic curve. --- Elliptic function. --- Elliptic integral. --- Equation. --- Euler product. --- Finitely generated abelian group. --- Fourier analysis. --- Function (mathematics). --- Functional equation. --- General linear group. --- Group homomorphism. --- Group isomorphism. --- Hecke operator. --- Holomorphic function. --- Homomorphism. --- Ideal (ring theory). --- Integer matrix. --- Integer. --- Integral domain. --- Intersection (set theory). --- Inverse function theorem. --- Invertible matrix. --- Irreducible polynomial. --- Isogeny. --- J-invariant. --- Linear fractional transformation. --- Linear map. --- Liouville's theorem (complex analysis). --- Mathematical induction. --- Meromorphic function. --- Minimal polynomial (field theory). --- Modular form. --- Monic polynomial. --- Möbius transformation. --- Number theory. --- P-adic number. --- Polynomial ring. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Principal axis theorem. --- Principal ideal domain. --- Principal ideal. --- Projective line. --- Projective variety. --- Quadratic equation. --- Quadratic function. --- Quadratic reciprocity. --- Riemann surface. --- Riemann zeta function. --- Simultaneous equations. --- Special case. --- Summation. --- Taylor series. --- Theorem. --- Torsion subgroup. --- Transcendence degree. --- Uniformization theorem. --- Unique factorization domain. --- Variable (mathematics). --- Weierstrass's elliptic functions. --- Weil conjecture.
Listing 1 - 5 of 5 |
Sort by
|