Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Choose an application
Proteins --- Intrinsically Disordered Proteins. --- Structure --- Structure. --- Natively Unfolded Proteins --- Unstructured Proteins --- Proteids --- Protein Folding --- Protein Unfolding --- Biomolecules --- Polypeptides --- Proteomics --- Animal Biochemistry --- Intrinsically Disordered Protein --- Natively Unfolded Protein --- Unstructured Protein --- Disordered Protein, Intrinsically --- Protein, Intrinsically Disordered --- Protein, Natively Unfolded --- Protein, Unstructured --- Unfolded Protein, Natively
Choose an application
Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.
Research & information: general --- Biology, life sciences --- fuzzy logic --- complexity --- chemical artificial intelligence --- human nervous system --- fuzzy proteins --- conformations --- photochromic compounds --- qubit --- protein dynamics --- conformational heterogeneity --- promiscuity --- fuzzy complexes --- higher-order structures --- protein evolution --- fuzzy set theory --- artificial intelligence --- GCN4 mimetic --- peptides-DNA --- E:Z photoisomerization --- conformational fuzziness --- photoelectrochemistry --- wide bandgap semiconductor --- artificial neuron --- in materio computing --- neuromorphic computing --- intrinsically disordered protein --- intrinsically disordered protein region --- liquid-liquid phase transition --- protein-protein interaction --- protein-nucleic acid interaction --- proteinaceous membrane-less organelle --- fuzzy complex. --- d-TST --- activation energy --- Transitivity plot --- solution kinetic --- Maxwell-Boltzmann path --- Euler's formula for the exponential --- activation --- transitivity --- transport phenomena --- moonlighting proteins --- intrinsically disordered proteins --- metamorphic proteins --- morpheeins --- fuzzy logic --- complexity --- chemical artificial intelligence --- human nervous system --- fuzzy proteins --- conformations --- photochromic compounds --- qubit --- protein dynamics --- conformational heterogeneity --- promiscuity --- fuzzy complexes --- higher-order structures --- protein evolution --- fuzzy set theory --- artificial intelligence --- GCN4 mimetic --- peptides-DNA --- E:Z photoisomerization --- conformational fuzziness --- photoelectrochemistry --- wide bandgap semiconductor --- artificial neuron --- in materio computing --- neuromorphic computing --- intrinsically disordered protein --- intrinsically disordered protein region --- liquid-liquid phase transition --- protein-protein interaction --- protein-nucleic acid interaction --- proteinaceous membrane-less organelle --- fuzzy complex. --- d-TST --- activation energy --- Transitivity plot --- solution kinetic --- Maxwell-Boltzmann path --- Euler's formula for the exponential --- activation --- transitivity --- transport phenomena --- moonlighting proteins --- intrinsically disordered proteins --- metamorphic proteins --- morpheeins
Choose an application
It is now clearly established that some proteins or protein regions are devoid of any stable secondary and/or tertiary structure under physiological conditions, but still possess fundamental biological functions. These intrinsically disordered proteins (IDPs) or regions (IDRs) have peculiar features due to their plasticity such as the capacity to bind their biological targets with high specificity and low affinity, and the possibility of interaction with numerous partners. A correlation between intrinsic disorder and various human diseases such as cancer, diabetes, amyloidoses and neurodegenerative diseases is now evident, highlighting the great importance of the topic. In this volume, we have collected recent high-quality research about IDPs and human diseases. We have selected nine papers which deal with a wide range of topics, from neurodegenerative disease to cancer, from IDR-mediated interactions to bioinformatics tools, all related to IDP peculiar features. Recent advances in the IDPs/IDRs issue are here presented, contributing to the progress of knowledge of the intrinsic disorder field in human disease.
Research & information: general --- Biology, life sciences --- alpha-synuclein --- NMR --- secondary structure propensity --- pre-structured motifs (PreSMos) --- intrinsically disordered protein --- ubiquitin-proteasome system --- intrinsically disordered proteins --- protein misfolding --- molecular recognition features --- cancer --- neurodegenerative diseases --- protein degradation --- EPR spectroscopy --- isothermal titration calorimetry --- protein-ligand interaction --- site-directed spin labeling --- protein structural dynamics --- WASp interacting protein --- protein-protein interactions --- actin --- cytoskeleton remodeling --- SH3 domain --- proline-rich motif --- single nucleotide variants --- interface core and rim --- human disease --- intrinsically disordered regions --- linear motifs --- gene duplications --- de novo --- evolutionary origin --- circular dichroism --- flexibility --- fluorescence --- importin --- isothermal titration calorimetry (ITC) --- molecular docking --- nuclear magnetic resonance (NMR) --- nuclear protein 1 (NPR1) --- peptide --- Methyl-CpG-binding protein 2 (MeCP2) --- Rett syndrome --- intrinsically disordered protein (IDP) --- protein stability --- protein-DNA interaction --- proteostasis --- ubiquitin independent degradation --- NADH-26S proteasome --- alpha-synuclein --- NMR --- secondary structure propensity --- pre-structured motifs (PreSMos) --- intrinsically disordered protein --- ubiquitin-proteasome system --- intrinsically disordered proteins --- protein misfolding --- molecular recognition features --- cancer --- neurodegenerative diseases --- protein degradation --- EPR spectroscopy --- isothermal titration calorimetry --- protein-ligand interaction --- site-directed spin labeling --- protein structural dynamics --- WASp interacting protein --- protein-protein interactions --- actin --- cytoskeleton remodeling --- SH3 domain --- proline-rich motif --- single nucleotide variants --- interface core and rim --- human disease --- intrinsically disordered regions --- linear motifs --- gene duplications --- de novo --- evolutionary origin --- circular dichroism --- flexibility --- fluorescence --- importin --- isothermal titration calorimetry (ITC) --- molecular docking --- nuclear magnetic resonance (NMR) --- nuclear protein 1 (NPR1) --- peptide --- Methyl-CpG-binding protein 2 (MeCP2) --- Rett syndrome --- intrinsically disordered protein (IDP) --- protein stability --- protein-DNA interaction --- proteostasis --- ubiquitin independent degradation --- NADH-26S proteasome
Choose an application
Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.
Research & information: general --- Biology, life sciences --- fuzzy logic --- complexity --- chemical artificial intelligence --- human nervous system --- fuzzy proteins --- conformations --- photochromic compounds --- qubit --- protein dynamics --- conformational heterogeneity --- promiscuity --- fuzzy complexes --- higher-order structures --- protein evolution --- fuzzy set theory --- artificial intelligence --- GCN4 mimetic --- peptides–DNA --- E:Z photoisomerization --- conformational fuzziness --- photoelectrochemistry --- wide bandgap semiconductor --- artificial neuron --- in materio computing --- neuromorphic computing --- intrinsically disordered protein --- intrinsically disordered protein region --- liquid–liquid phase transition --- protein–protein interaction --- protein–nucleic acid interaction --- proteinaceous membrane-less organelle --- fuzzy complex. --- d-TST --- activation energy --- Transitivity plot --- solution kinetic --- Maxwell–Boltzmann path --- Euler’s formula for the exponential --- activation --- transitivity --- transport phenomena --- moonlighting proteins --- intrinsically disordered proteins --- metamorphic proteins --- morpheeins --- n/a --- peptides-DNA --- liquid-liquid phase transition --- protein-protein interaction --- protein-nucleic acid interaction --- Maxwell-Boltzmann path --- Euler's formula for the exponential
Choose an application
It is now clearly established that some proteins or protein regions are devoid of any stable secondary and/or tertiary structure under physiological conditions, but still possess fundamental biological functions. These intrinsically disordered proteins (IDPs) or regions (IDRs) have peculiar features due to their plasticity such as the capacity to bind their biological targets with high specificity and low affinity, and the possibility of interaction with numerous partners. A correlation between intrinsic disorder and various human diseases such as cancer, diabetes, amyloidoses and neurodegenerative diseases is now evident, highlighting the great importance of the topic. In this volume, we have collected recent high-quality research about IDPs and human diseases. We have selected nine papers which deal with a wide range of topics, from neurodegenerative disease to cancer, from IDR-mediated interactions to bioinformatics tools, all related to IDP peculiar features. Recent advances in the IDPs/IDRs issue are here presented, contributing to the progress of knowledge of the intrinsic disorder field in human disease.
alpha-synuclein --- NMR --- secondary structure propensity --- pre-structured motifs (PreSMos) --- intrinsically disordered protein --- ubiquitin-proteasome system --- intrinsically disordered proteins --- protein misfolding --- molecular recognition features --- cancer --- neurodegenerative diseases --- protein degradation --- EPR spectroscopy --- isothermal titration calorimetry --- protein-ligand interaction --- site-directed spin labeling --- protein structural dynamics --- WASp interacting protein --- protein–protein interactions --- actin --- cytoskeleton remodeling --- SH3 domain --- proline-rich motif --- single nucleotide variants --- interface core and rim --- human disease --- intrinsically disordered regions --- linear motifs --- gene duplications --- de novo --- evolutionary origin --- circular dichroism --- flexibility --- fluorescence --- importin --- isothermal titration calorimetry (ITC) --- molecular docking --- nuclear magnetic resonance (NMR) --- nuclear protein 1 (NPR1) --- peptide --- Methyl-CpG-binding protein 2 (MeCP2) --- Rett syndrome --- intrinsically disordered protein (IDP) --- protein stability --- protein-DNA interaction --- proteostasis --- ubiquitin independent degradation --- NADH-26S proteasome --- n/a --- protein-protein interactions
Choose an application
Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.
fuzzy logic --- complexity --- chemical artificial intelligence --- human nervous system --- fuzzy proteins --- conformations --- photochromic compounds --- qubit --- protein dynamics --- conformational heterogeneity --- promiscuity --- fuzzy complexes --- higher-order structures --- protein evolution --- fuzzy set theory --- artificial intelligence --- GCN4 mimetic --- peptides–DNA --- E:Z photoisomerization --- conformational fuzziness --- photoelectrochemistry --- wide bandgap semiconductor --- artificial neuron --- in materio computing --- neuromorphic computing --- intrinsically disordered protein --- intrinsically disordered protein region --- liquid–liquid phase transition --- protein–protein interaction --- protein–nucleic acid interaction --- proteinaceous membrane-less organelle --- fuzzy complex. --- d-TST --- activation energy --- Transitivity plot --- solution kinetic --- Maxwell–Boltzmann path --- Euler’s formula for the exponential --- activation --- transitivity --- transport phenomena --- moonlighting proteins --- intrinsically disordered proteins --- metamorphic proteins --- morpheeins --- n/a --- peptides-DNA --- liquid-liquid phase transition --- protein-protein interaction --- protein-nucleic acid interaction --- Maxwell-Boltzmann path --- Euler's formula for the exponential
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
Research & information: general --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
Research & information: general --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid-liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order-disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau-microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid-liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order-disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau-microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design
Listing 1 - 10 of 13 | << page >> |
Sort by
|