Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Quantum theory. --- Quantum entanglement. --- Théorie quantique. --- Intrication quantique.
Choose an application
Quiconque n’est pas choqué par la théorie quantique ne la comprend pas. » La phrase de Niels Bohr s’applique merveilleusement à la notion mystérieuse forgée par Erwin Schrödinger en 1935, l’intrication : deux particules sont capables de s’influencer instantanément, quel que soit leur éloignement. Einstein refusait cette « fantomatique action à distance », mais Anton Zeilinger prouva son existence lors de magistrales expériences menées avec des photons, d’abord sous le Danube, puis sur 150 km entre deux sommets des îles Canaries ! L’auteur lève ici un coin du voile en expliquant pas à pas comment il a procédé et l’extraordinaire portée de ses travaux. Il détaille en outre la puissance de l’intrication, qui, au cœur de la nouvelle révolution quantique en cours, pourrait bien bouleverser notre façon de communiquer, de mesurer et de calculer demain. Si la téléportation, les inégalités de Bell et le paradoxe EPR titillent votre curiosité, alors ce livre est fait pour vous !
Quantum theory. --- Quantum teleportation. --- Einstein-Podolsky-Rosen experiment. --- Bell's theorem. --- Théorie quantique. --- Intrication quantique. --- Téléportation quantique. --- Paradoxe EPR. --- Inégalités de Bell. --- Einstein, Albert, --- Podolsky, Boris, --- Rosen, Nathan,
Choose an application
The theory of quantum entanglement is still under construction and has generated great interest over the last thirty years. Indeed, determining whether a given quantum state is entangled or not is still an open problem today in physics, known as the separability problem. In this manuscript, we aim at giving a selective but up to date review of the separability problem. We focus on the theoretical perspective of the problem. Theoretically, quantum entanglement is defined by a mathematical property of quantum states that are described by density operators acting on Hilbert spaces. We first explicit this definition and introduce some basis notions of the entanglement theory such as the Bloch representation of quantum states. Then, we present and analyse several separability criteria. We begin with the most important ones developed from 1996 to 2003, that is the PPT criterion, criteria based on entanglement witnesses, on entanglement measures (such as negativity or concurrences) and the CCNR criterion. We then move on to more recent criteria, developed from 2009 to 2020. Most of them make use of the Bloch representation. We finally conclude by comparing the exposed criteria.
Choose an application
The role of entanglement is to substantially enhance the speed of computations by a process that classical computers could not achieve. Indeed, entanglement is something mysterious from quantum mechanics that has no equivalent in classical mechanics. An enormous quantity of work has been carried in the past decades to answer some natural questions about entanglement. How to know if a state is entangled or not (Separability problem)? If a state is entangled, how much is it, and how far from a separable state is it (Entanglement measure)? Can an entangled state perform the same tasks as another entangled state (Entanglement classification)? These questions are increasingly mastered over time and are the keystone of progress in quantum computation, in conjunction with technical progress. Entanglement classification fails to be finite when we consider something greater than a 4-qubit system. This issue has been analysed and solved by Masoud Gharahi, Stefano Mancini and Giorgio Ottaviani in their paper with help of algebraic geometry. The purpose of this thesis is to make a detailed overview of the notions this article needs to be understood.
Entanglement --- Entanglement Classification --- Entanglement classification by algebraic geometry --- Entanglement thesis --- entanglement classification thesis --- Algebraic geometry thesis --- algebraic geometry --- Intrication --- Classification de l'intrication --- Thesis about entanglement classification --- Gharahi --- Mancini --- Ottaviani --- k-secant --- tangent variety --- projective Hilbert space --- l-multilinear rank --- projective variety --- SLOCC classification --- SLOCC entanglement --- Classification algorithm --- Segre embedding --- Zariski topology --- Physique, chimie, mathématiques & sciences de la terre > Physique
Choose an application
Since the discovery of quantum entanglement, characterization and detection of multipartite entanglement has remained an open question. In this work, we present how one can map the separability problem onto the truncated moment problem in probability theory. It leads to a necessary and sufficient condition for the separability of arbitrary quantum systems with arbitrary symmetries between the subparts. A semidefinite algorithm is presented, whose outcome provides a certificate of separability, or entanglement.
Entanglement --- Semidefinite optimization --- Truncated moment problem --- Convex optimization --- Separability problem --- Certificate of entanglement --- Certificate of separability --- Intrication --- Optimisation semidefinite --- Problème des moments tronqué --- Optimisation convexe --- Problème de la séparabilité --- Certificat d'intrication --- Certificat de séparabilité --- Physique, chimie, mathématiques & sciences de la terre > Physique
Listing 1 - 5 of 5 |
Sort by
|