Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Autonomous Control of Unmanned Aerial Vehicles
Author:
ISBN: 3039210319 3039210300 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.

Keywords

Research & information: general --- estuary --- morphology --- rapid assessment --- bathymetry --- flow velocity --- salinity --- tool --- remotely-sensed imagery --- small unmanned aerial system (sUAS) --- river flow --- thermal infrared imagery --- particle image velocimetry --- lidar bathymetry --- fluvial --- geomorphology --- change detection --- remotely piloted aircraft system --- refraction correction --- structure-from-motion photogrammetry --- water surface elevation --- topographic error --- machine learning --- UAV LiDAR --- airborne laser bathymetry --- full waveform processing --- performance assessment --- high resolution hydro-mapping --- remote sensing --- rivers --- discharge --- hydrology --- modelling --- ungauged basins --- Alaska --- river --- PIV --- large-scale particle image velocimetry --- LSPIV --- surface velocity --- river discharge --- Doppler radar --- pulsed radar --- probability concept --- water temperature --- salmonids --- Pend Oreille River --- thermal infrared (TIR) --- acoustic Doppler current profiler (ADCP) --- channel bathymetry --- cold-water refuge --- dam --- flooding --- high-water marks (HWMs) --- small unmanned aircraft systems (sUAS) --- drone --- photogrammetry --- hydraulic modeling --- aerial photography --- surveying --- inundation --- Landsat --- streamflow --- flow frequency --- satellite revisit time --- flow regime --- estuary --- morphology --- rapid assessment --- bathymetry --- flow velocity --- salinity --- tool --- remotely-sensed imagery --- small unmanned aerial system (sUAS) --- river flow --- thermal infrared imagery --- particle image velocimetry --- lidar bathymetry --- fluvial --- geomorphology --- change detection --- remotely piloted aircraft system --- refraction correction --- structure-from-motion photogrammetry --- water surface elevation --- topographic error --- machine learning --- UAV LiDAR --- airborne laser bathymetry --- full waveform processing --- performance assessment --- high resolution hydro-mapping --- remote sensing --- rivers --- discharge --- hydrology --- modelling --- ungauged basins --- Alaska --- river --- PIV --- large-scale particle image velocimetry --- LSPIV --- surface velocity --- river discharge --- Doppler radar --- pulsed radar --- probability concept --- water temperature --- salmonids --- Pend Oreille River --- thermal infrared (TIR) --- acoustic Doppler current profiler (ADCP) --- channel bathymetry --- cold-water refuge --- dam --- flooding --- high-water marks (HWMs) --- small unmanned aircraft systems (sUAS) --- drone --- photogrammetry --- hydraulic modeling --- aerial photography --- surveying --- inundation --- Landsat --- streamflow --- flow frequency --- satellite revisit time --- flow regime

Listing 1 - 4 of 4
Sort by