Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
In girum imus nocte et consumimur igni (Motion picture)
---
#BIBC:ruil
Choose an application
The primary goal of this research is to develop a Human Activity Recognition (HAR) system using Inertial Measurement Units (IMUs), such as accelerometers and gyroscopes, to accurately identify and classify various types of physical movements. The study specifically explores the use of wearable sensors for monitoring motor activities, offering an alternative solution to traditional camera-based motion capture systems, which have significant limitations, such as high costs and privacy concerns. The thesis discusses various stages of the process, including data acquisition through an experimental setup, data preprocessing, feature extraction and selection, and finally, the application of machine learning algorithms, such as Multilayer Perceptron (MLP) neural networks, for activity recognition and analysis. The research also includes a comparative evaluation of the performance of models based on sensors positioned in different parts of the body (wrist, thigh, pocket) and provides detailed results regarding the accuracy of the models used.
Human Activity Recognition (HAR), --- Wearable Sensors --- Machine Learning Algorithms --- Physical Activity Monitoring --- Multilayer Perceptron (MLP) --- Motion Analysis --- Inertial Measurement Units (IMUs) --- Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Choose an application
The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.
History of engineering & technology --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring
Choose an application
The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.
History of engineering & technology --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring
Choose an application
The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.
inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
Humanities --- Social interaction --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
History of engineering & technology --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
Humanities --- Social interaction --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive-motor impairment --- Alzheimer's disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson's disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson's disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson's Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
Humanities --- Social interaction --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive–motor impairment --- Alzheimer’s disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson’s disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- n/a --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson’s disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson’s Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- cognitive-motor impairment --- Alzheimer's disease --- Parkinson's disease (PD) --- Parkinson's disease --- Parkinson's Diseases
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
Humanities --- Social interaction --- step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive–motor impairment --- Alzheimer’s disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson’s disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- n/a --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson’s disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson’s Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- cognitive-motor impairment --- Alzheimer's disease --- Parkinson's disease (PD) --- Parkinson's disease --- Parkinson's Diseases
Listing 1 - 10 of 14 | << page >> |
Sort by
|