Listing 1 - 4 of 4
Sort by

Book
Phytophthora Infestations in Forest Ecosystems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oomycete genus Phytophthora represents one of the most notorious groups of tree pathogens in natural and semi-natural forest ecosystems. Since the discovery in the 1960s of the invasive P. cinnamomi, threatening some of the world’s richest plant communities in Australia, numerous Phytophthora diseases have been reported on forest trees worldwide, which were previously unknown to science. The most notable examples include the oak and beech declines triggered by different Phytophthora spp. in Europe and North America, the findings of sudden oak death and sudden larch death caused by P. ramorum in the Western USA and the U.K., respectively, and the association of P. austrocedri with mal del ciprés in Argentina and juniper decline in the U.K. All these epidemic events are driven by exotic invasive Phytophthora species, introduced through infested nursery plants from their native overseas environments. In recent years, many independent surveys have studied the diversity of Phytophthora species and the diseases they are causing across a diverse range of forests and other natural ecosystems. This Special Issue presents papers on Phytophthora surveys performed in different biogeographic regions and addresses the pathways, and ecological and economic impacts of these invasive forest pathogens.


Book
Phytophthora Infestations in Forest Ecosystems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oomycete genus Phytophthora represents one of the most notorious groups of tree pathogens in natural and semi-natural forest ecosystems. Since the discovery in the 1960s of the invasive P. cinnamomi, threatening some of the world’s richest plant communities in Australia, numerous Phytophthora diseases have been reported on forest trees worldwide, which were previously unknown to science. The most notable examples include the oak and beech declines triggered by different Phytophthora spp. in Europe and North America, the findings of sudden oak death and sudden larch death caused by P. ramorum in the Western USA and the U.K., respectively, and the association of P. austrocedri with mal del ciprés in Argentina and juniper decline in the U.K. All these epidemic events are driven by exotic invasive Phytophthora species, introduced through infested nursery plants from their native overseas environments. In recent years, many independent surveys have studied the diversity of Phytophthora species and the diseases they are causing across a diverse range of forests and other natural ecosystems. This Special Issue presents papers on Phytophthora surveys performed in different biogeographic regions and addresses the pathways, and ecological and economic impacts of these invasive forest pathogens.

Keywords

Research & information: general --- Biology, life sciences --- Ecological science, the Biosphere --- soilborne pathogens --- pathways --- Populus --- Phytophthora plurivora --- Phytophthora pini --- pathogenicity tests --- biomass allocation --- dehesas --- drought --- montados --- oak decline --- plant traits --- root rot --- invasive species --- natural ecosystems --- streams --- vegetation type --- baiting --- ITS region --- leaf decay --- oomycetes --- aquatic fungi --- trophic specialization --- saprotroph --- pathogen --- parasite --- Phytophthora --- diversity --- wild apple forest --- decline --- forest disease monitoring --- holm oak decline --- biosecurity --- breeding systems --- hybridization --- Phytophthora cinnamomi --- biogeography --- center of origin --- GLMM --- tree mortality --- root rot. --- plantation --- open forests --- Phytophthora ×cambivora --- bark canker --- ectomycorrhiza --- cork oak --- soilborne pathogens --- pathways --- Populus --- Phytophthora plurivora --- Phytophthora pini --- pathogenicity tests --- biomass allocation --- dehesas --- drought --- montados --- oak decline --- plant traits --- root rot --- invasive species --- natural ecosystems --- streams --- vegetation type --- baiting --- ITS region --- leaf decay --- oomycetes --- aquatic fungi --- trophic specialization --- saprotroph --- pathogen --- parasite --- Phytophthora --- diversity --- wild apple forest --- decline --- forest disease monitoring --- holm oak decline --- biosecurity --- breeding systems --- hybridization --- Phytophthora cinnamomi --- biogeography --- center of origin --- GLMM --- tree mortality --- root rot. --- plantation --- open forests --- Phytophthora ×cambivora --- bark canker --- ectomycorrhiza --- cork oak

Ecology of Mediterranean evergreen oak forests
Authors: --- --- ---
ISSN: 00708356 ISBN: 3540650199 3642636683 364258618X Year: 1999 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

582.632.26 --- 581.526.426 --- <4-015> --- Quercus. Oak --- Evergreen forest formations --- Middellandse-Zeegebied --- evergreen forests --- forest ecology --- plant ecophysiology --- the Mediterranean ( = region ) --- <4-015> Middellandse-Zeegebied --- 581.526.426 Evergreen forest formations --- 582.632.26 Quercus. Oak --- Biogeochemistry --- Forest ecology --- Holm oak --- Plant ecophysiology --- Environmental plant physiology --- Physiological plant ecology --- Plant physiological ecology --- Ecophysiology --- Plant ecology --- Plant physiology --- Quercus ilex --- Oak --- Forests and forestry --- Ecology --- Biochemistry --- Geochemistry --- Forest ecosystems --- Ecology . --- Agriculture. --- Forestry. --- Geoecology. --- Environmental geology. --- Nature conservation. --- Plant science. --- Botany. --- Ecology. --- Geoecology/Natural Processes. --- Nature Conservation. --- Plant Sciences. --- Botanical science --- Phytobiology --- Phytography --- Phytology --- Plant biology --- Plant science --- Biology --- Natural history --- Plants --- Conservation of nature --- Nature --- Nature protection --- Protection of nature --- Conservation of natural resources --- Applied ecology --- Conservation biology --- Endangered ecosystems --- Natural areas --- Geoecology --- Environmental protection --- Physical geology --- Forest land --- Forest lands --- Forest planting --- Forest production --- Forest sciences --- Forestation --- Forested lands --- Forestland --- Forestlands --- Forestry --- Forestry industry --- Forestry sciences --- Land, Forest --- Lands, Forest --- Silviculture --- Sylviculture --- Woodlands --- Woods (Forests) --- Agriculture --- Natural resources --- Afforestation --- Arboriculture --- Logging --- Timber --- Tree crops --- Trees --- Farming --- Husbandry --- Industrial arts --- Life sciences --- Food supply --- Land use, Rural --- Balance of nature --- Bionomics --- Ecological processes --- Ecological science --- Ecological sciences --- Environment --- Environmental biology --- Oecology --- Environmental sciences --- Population biology --- Conservation --- Floristic botany


Book
Plant Proteomic Research 2.0
Author:
ISBN: 3039210637 3039210629 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

14-3-3 proteins --- n/a --- targeted two-dimensional electrophoresis --- somatic embryogenesis --- nitrogen metabolism --- subtilase --- Sporisorium scitamineum --- non-orthodox seed --- antioxidant activity --- sweet potato plants infected by SPFMV --- photosynthesis --- B. acuminata petals --- chlorophyll deficiency --- seed proteomics --- imbibition --- pollination --- Sarpo Mira --- qRT-PCR --- holm oak --- tuber phosphoproteome --- isobaric tags for relative and absolute quantitation (iTRAQ) --- Quercus ilex --- nucleotide pyrophosphatase/phosphodiesterase --- lettuce --- ?-subunit --- protein phosphatase --- germination --- drought stress --- pyruvate biosynthesis --- weakening of carbon metabolism --- differential proteins --- heterotrimeric G protein --- organ --- LC-MS-based proteomics --- potato proteomics --- smut --- gel-free/label-free proteomics --- ? subunit --- shotgun proteomics --- 2D --- chloroplast --- proteome functional annotation --- Phalaenopsis --- Clematis terniflora DC. --- wheat --- Dn1-1 --- carbon metabolism --- physiological responses --- Zea mays --- phenylpropanoid biosynthesis --- ISR --- mass spectrometric analysis --- patatin --- leaf --- pea (Pisum sativum L.) --- maize --- ergosterol --- Camellia sinensis --- seed storage proteins --- silver nanoparticles --- elevated CO2 --- metacaspase --- SPV2 and SPVG --- SnRK1 --- MALDI-TOF/TOF --- (phospho)-proteomics --- leaf spot --- rice isogenic line --- wheat leaf rust --- pathway analysis --- phosphoproteome --- sugarcane --- senescence --- Oryza sativa L. --- Arabidopsis thaliana --- heat stress --- gene ontology --- innate immunity --- Pseudomonas syringae --- bolting --- chlorophylls --- shoot --- Simmondsia chinensis --- RT-qPCR --- stresses responses --- Solanum tuberosum --- seeds --- GC-TOF-MS --- sucrose --- proteome --- Puccinia recondita --- cultivar --- Zea mays L. --- secondary metabolism --- ROS --- Ricinus communis L. --- after-ripening --- cadmium --- Stagonospora nodorum --- virus induced gene silencing --- quantitative proteomics --- sweet potato plants non-infected by SPFMV --- affinity chromatography --- population variability --- GS3 --- fungal perception --- ammonium --- transcriptome profiling --- mass spectrometry analysis --- papain-like cysteine protease (PLCP) --- cold stress --- nitrate --- late blight disease --- early and late disease stages --- seed imbibition --- lesion mimic mutant --- protease --- proteome map --- seed dormancy --- petal --- 2-DE proteomics --- 2D DIGE --- root --- Phytophthora infestans --- differentially abundant proteins (DAPs) --- polyphenol oxidase --- degradome --- flavonoid --- 14-3-3 --- caspase-like --- proteomics --- RGG4 --- co-infection --- plasma membrane --- chlorotic mutation --- Medicago sativa --- RGG3 --- glycolysis --- barley --- 2-DE --- protein phosphorylation --- western blotting --- N utilization efficiency --- rice --- plant pathogenesis responses --- high temperature --- data-independent acquisition --- pattern recognition receptors --- vegetative storage proteins --- leaf cell wall proteome --- plant-derived smoke --- iTRAQ --- starch --- proteome profiling --- Morus

Listing 1 - 4 of 4
Sort by