Narrow your search

Library

UGent (1)


Resource type

article (1)


Language

Undetermined (1)


Year
From To Submit

2000 (1)

Listing 1 - 1 of 1
Sort by

Article
Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain.

Loading...
Export citation

Choose an application

Bookmark

Abstract

A number of studies have demonstrated that both morphological and biochemical indices in the brain undergo alterations in response to environmental influences. In previous work we have shown that rats raised in an enriched environmental condition (EC) perform better on a spatial memory task than rats raised in isolated conditions (IC), We have also found that EC rats have a higher density of immunoreactivity than IC rats for both low and high affinity nerve growth factor (NGF) receptors in the basal forebrain. In order to determine if these alterations were coupled with altered levels of neurotrophins in other brain regions as well, we measured neurotrophin levels in rats that were raised in EC or IC conditions. Rats were placed in the different environments at 2 months of age and 12 months later brain regions were dissected and analyzed for NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) levels using Promega ELISA kits. We found that NGF and BDNF levels were increased in the cerebral cortex, hippocampal formation, basal forebrain, and hindbrain in EC animals compared to age-matched IC animals. NT-3 was found to be increased in the basal forebrain and cerebral cortex of EC animals as well. These findings demonstrate significant alterations in NGF, BDNF, and NT-3 protein levels in several brain regions as a result of an enriched versus an isolated environment and thus provide a possible biochemical basis for behavioral and morphological alterations that have been found to occur with a shifting environmental stimulus. (C) 2000 Academic Press

Listing 1 - 1 of 1
Sort by