Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2021 (3)

2020 (3)

Listing 1 - 9 of 9
Sort by

Book
New Challenges Arising in Engineering Problems with Fractional and Integer Order
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem.

Keywords

Technology: general issues --- fractional kinetic equation --- Riemann-Liouville fractional integral operator --- incomplete I-functions --- Laplace transform --- fractional differential equations --- fractional generalized biologic population --- Sumudu transform --- Adomian decomposition method --- Caputo fractional derivative --- operator theory --- time scales --- integral inequalities --- Burgers' equation --- reproducing kernel method --- error estimate --- Dirichlet and Neumann boundary conditions --- Caputo derivative --- Laplace transforms --- constant proportional Caputo derivative --- modeling --- Volterra-type fractional integro-differential equation --- Hilfer fractional derivative --- Lorenzo-Hartely function --- generalized Lauricella confluent hypergeometric function --- Elazki transform --- caputo fractional derivative --- predator-prey model --- harvesting rate --- stability analysis --- equilibrium point --- implicit discretization numerical scheme --- the (m + 1/G')-expansion method --- the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation --- periodic and singular complex wave solutions --- traveling waves solutions --- chaotic finance --- fractional calculus --- Atangana-Baleanu derivative --- uniqueness of the solution --- fixed point theory --- shifted Legendre polynomials --- variable coefficient --- three-point boundary value problem --- modified alpha equation --- Bernoulli sub-equation function method --- rational function solution --- complex solution --- contour surface --- variable exponent --- fractional integral --- maximal operator


Book
New Challenges Arising in Engineering Problems with Fractional and Integer Order
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem.

Keywords

Technology: general issues --- fractional kinetic equation --- Riemann–Liouville fractional integral operator --- incomplete I-functions --- Laplace transform --- fractional differential equations --- fractional generalized biologic population --- Sumudu transform --- Adomian decomposition method --- Caputo fractional derivative --- operator theory --- time scales --- integral inequalities --- Burgers’ equation --- reproducing kernel method --- error estimate --- Dirichlet and Neumann boundary conditions --- Caputo derivative --- Laplace transforms --- constant proportional Caputo derivative --- modeling --- Volterra-type fractional integro-differential equation --- Hilfer fractional derivative --- Lorenzo-Hartely function --- generalized Lauricella confluent hypergeometric function --- Elazki transform --- caputo fractional derivative --- predator–prey model --- harvesting rate --- stability analysis --- equilibrium point --- implicit discretization numerical scheme --- the (m + 1/G′)-expansion method --- the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation --- periodic and singular complex wave solutions --- traveling waves solutions --- chaotic finance --- fractional calculus --- Atangana-Baleanu derivative --- uniqueness of the solution --- fixed point theory --- shifted Legendre polynomials --- variable coefficient --- three-point boundary value problem --- modified alpha equation --- Bernoulli sub-equation function method --- rational function solution --- complex solution --- contour surface --- variable exponent --- fractional integral --- maximal operator --- n/a --- Riemann-Liouville fractional integral operator --- Burgers' equation --- predator-prey model --- the (m + 1/G')-expansion method --- the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation


Book
New Challenges Arising in Engineering Problems with Fractional and Integer Order
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem.

Keywords

fractional kinetic equation --- Riemann–Liouville fractional integral operator --- incomplete I-functions --- Laplace transform --- fractional differential equations --- fractional generalized biologic population --- Sumudu transform --- Adomian decomposition method --- Caputo fractional derivative --- operator theory --- time scales --- integral inequalities --- Burgers’ equation --- reproducing kernel method --- error estimate --- Dirichlet and Neumann boundary conditions --- Caputo derivative --- Laplace transforms --- constant proportional Caputo derivative --- modeling --- Volterra-type fractional integro-differential equation --- Hilfer fractional derivative --- Lorenzo-Hartely function --- generalized Lauricella confluent hypergeometric function --- Elazki transform --- caputo fractional derivative --- predator–prey model --- harvesting rate --- stability analysis --- equilibrium point --- implicit discretization numerical scheme --- the (m + 1/G′)-expansion method --- the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation --- periodic and singular complex wave solutions --- traveling waves solutions --- chaotic finance --- fractional calculus --- Atangana-Baleanu derivative --- uniqueness of the solution --- fixed point theory --- shifted Legendre polynomials --- variable coefficient --- three-point boundary value problem --- modified alpha equation --- Bernoulli sub-equation function method --- rational function solution --- complex solution --- contour surface --- variable exponent --- fractional integral --- maximal operator --- n/a --- Riemann-Liouville fractional integral operator --- Burgers' equation --- predator-prey model --- the (m + 1/G')-expansion method --- the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation


Book
New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.

Keywords

Research & information: general --- Mathematics & science --- bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér-Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher's equation --- Hukuhara difference --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann-Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley's method --- basin of attraction --- computational order of convergence --- Caputo-Hadamard fractional derivative --- thermostat modeling --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo-Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder's inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta-Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler's integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox-Wright-function --- generalized fractional kinetic equation


Book
Fractional-Order Integral and Derivative Operators and Their Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, various families of fractional-order integral and derivative operators, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably important and fruitful, due mainly to their demonstrated applications in numerous seemingly diverse and widespread areas of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide interesting, potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables. For this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional-order integral and derivative operators and their multidisciplinary applications.

Keywords

Research & information: general --- Mathematics & science --- Legendre wavelet --- operational matrix --- systems of fractional order differential equations --- Liouville_Caputo sense --- analytic functions --- starlike functions --- univalent functions --- length problems --- SIR model --- Hermite collocation method --- approximate solution --- Hermite polynomials and series --- collocation points --- starlike and q-starlike functions --- q-derivative operator --- q-hypergeometric functions --- conic and generalized conic domains --- Hankel determinant --- Toeplitz matrices --- fractional differential equations --- Riemann-stieltjes integral --- monotone iterative method --- upper and lower solutions --- fractional diffusion equation --- controllability --- impulsive system --- unique continuation property --- non-linear fractional variational problems --- orthogonal polynomials --- Rayleigh-Ritz method --- error analysis --- convergence analysis --- Banach space --- Sobolev space --- Laplace operators --- nonlocal boundary conditions --- fractional differential systems --- mixed Riemann–Liouville integral --- mixed Hadamard integral --- Hilfer derivative --- Hadamard derivative --- coupled system --- random solution --- variable order fractional derivative --- initial value problem --- piecewise constant functions --- starlike function --- Toeplitz determinant --- sine function --- upper bound --- convex functions --- subordination --- logarithmic coefficients --- Gauss hypergeometric function --- confluent hypergeometric function --- Appell’s functions --- incomplete fractional calculus --- Riemann-Liouville fractional integral --- generating functions --- fractional integrals --- fractional derivatives --- Mittag–Leffler functions --- field spectrum --- fractional calculus --- desert soil --- available potassium --- correlation analysis --- Post-Exposure Prophylaxis --- latent reservoir --- HIV infection --- fractional order model --- multivalent functions --- close-to-convex functions --- uniformly starlike functions --- uniformly close-to-convex functions --- conic domains --- q-calculus --- differential subordination --- Janowski function --- cardioid domain --- limacon domain --- fractional order unknown input fuzzy observer --- fractional order Takagi–Sugeno models --- L2 optimization --- linear matrix inequalities --- unmeasurable premise variables --- global solutions --- fractional in time and space shallow-water system --- ψ-Caputo fractional derivative --- Hilfer fractional derivative --- Ulam stability --- pantograph differential equation --- nonlocal integral condition --- Miura transform --- soliton equations --- logarithm --- n/a --- mixed Riemann-Liouville integral --- Appell's functions --- Mittag-Leffler functions --- fractional order Takagi-Sugeno models


Book
New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.

Keywords

Research & information: general --- Mathematics & science --- bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér–Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher’s equation --- Hukuhara difference --- Atangana–Baleanu fractional derivative operator --- Mittag–Leffler kernel --- Fornberg–Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann–Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley’s method --- basin of attraction --- computational order of convergence --- Caputo–Hadamard fractional derivative --- thermostat modeling --- Caputo–Hadamard fractional integral --- hybrid Caputo–Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo–Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder’s inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta–Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler’s integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox–Wright-function --- generalized fractional kinetic equation --- n/a --- Fejér-Hadamard inequality --- Fisher's equation --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- Riemann-Liouville derivative --- Halley's method --- Caputo-Hadamard fractional derivative --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- Hölder's inequality --- shifted Vieta-Lucas polynomials --- Euler's integral of gamma functions --- Fox-Wright-function


Book
New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.

Keywords

bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér–Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher’s equation --- Hukuhara difference --- Atangana–Baleanu fractional derivative operator --- Mittag–Leffler kernel --- Fornberg–Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann–Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley’s method --- basin of attraction --- computational order of convergence --- Caputo–Hadamard fractional derivative --- thermostat modeling --- Caputo–Hadamard fractional integral --- hybrid Caputo–Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo–Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder’s inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta–Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler’s integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox–Wright-function --- generalized fractional kinetic equation --- n/a --- Fejér-Hadamard inequality --- Fisher's equation --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- Riemann-Liouville derivative --- Halley's method --- Caputo-Hadamard fractional derivative --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- Hölder's inequality --- shifted Vieta-Lucas polynomials --- Euler's integral of gamma functions --- Fox-Wright-function


Book
Fractional-Order Integral and Derivative Operators and Their Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, various families of fractional-order integral and derivative operators, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably important and fruitful, due mainly to their demonstrated applications in numerous seemingly diverse and widespread areas of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide interesting, potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables. For this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional-order integral and derivative operators and their multidisciplinary applications.

Keywords

Legendre wavelet --- operational matrix --- systems of fractional order differential equations --- Liouville_Caputo sense --- analytic functions --- starlike functions --- univalent functions --- length problems --- SIR model --- Hermite collocation method --- approximate solution --- Hermite polynomials and series --- collocation points --- starlike and q-starlike functions --- q-derivative operator --- q-hypergeometric functions --- conic and generalized conic domains --- Hankel determinant --- Toeplitz matrices --- fractional differential equations --- Riemann-stieltjes integral --- monotone iterative method --- upper and lower solutions --- fractional diffusion equation --- controllability --- impulsive system --- unique continuation property --- non-linear fractional variational problems --- orthogonal polynomials --- Rayleigh-Ritz method --- error analysis --- convergence analysis --- Banach space --- Sobolev space --- Laplace operators --- nonlocal boundary conditions --- fractional differential systems --- mixed Riemann–Liouville integral --- mixed Hadamard integral --- Hilfer derivative --- Hadamard derivative --- coupled system --- random solution --- variable order fractional derivative --- initial value problem --- piecewise constant functions --- starlike function --- Toeplitz determinant --- sine function --- upper bound --- convex functions --- subordination --- logarithmic coefficients --- Gauss hypergeometric function --- confluent hypergeometric function --- Appell’s functions --- incomplete fractional calculus --- Riemann-Liouville fractional integral --- generating functions --- fractional integrals --- fractional derivatives --- Mittag–Leffler functions --- field spectrum --- fractional calculus --- desert soil --- available potassium --- correlation analysis --- Post-Exposure Prophylaxis --- latent reservoir --- HIV infection --- fractional order model --- multivalent functions --- close-to-convex functions --- uniformly starlike functions --- uniformly close-to-convex functions --- conic domains --- q-calculus --- differential subordination --- Janowski function --- cardioid domain --- limacon domain --- fractional order unknown input fuzzy observer --- fractional order Takagi–Sugeno models --- L2 optimization --- linear matrix inequalities --- unmeasurable premise variables --- global solutions --- fractional in time and space shallow-water system --- ψ-Caputo fractional derivative --- Hilfer fractional derivative --- Ulam stability --- pantograph differential equation --- nonlocal integral condition --- Miura transform --- soliton equations --- logarithm --- n/a --- mixed Riemann-Liouville integral --- Appell's functions --- Mittag-Leffler functions --- fractional order Takagi-Sugeno models


Book
Fractional-Order Integral and Derivative Operators and Their Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, various families of fractional-order integral and derivative operators, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably important and fruitful, due mainly to their demonstrated applications in numerous seemingly diverse and widespread areas of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide interesting, potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables. For this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional-order integral and derivative operators and their multidisciplinary applications.

Keywords

Research & information: general --- Mathematics & science --- Legendre wavelet --- operational matrix --- systems of fractional order differential equations --- Liouville_Caputo sense --- analytic functions --- starlike functions --- univalent functions --- length problems --- SIR model --- Hermite collocation method --- approximate solution --- Hermite polynomials and series --- collocation points --- starlike and q-starlike functions --- q-derivative operator --- q-hypergeometric functions --- conic and generalized conic domains --- Hankel determinant --- Toeplitz matrices --- fractional differential equations --- Riemann-stieltjes integral --- monotone iterative method --- upper and lower solutions --- fractional diffusion equation --- controllability --- impulsive system --- unique continuation property --- non-linear fractional variational problems --- orthogonal polynomials --- Rayleigh-Ritz method --- error analysis --- convergence analysis --- Banach space --- Sobolev space --- Laplace operators --- nonlocal boundary conditions --- fractional differential systems --- mixed Riemann-Liouville integral --- mixed Hadamard integral --- Hilfer derivative --- Hadamard derivative --- coupled system --- random solution --- variable order fractional derivative --- initial value problem --- piecewise constant functions --- starlike function --- Toeplitz determinant --- sine function --- upper bound --- convex functions --- subordination --- logarithmic coefficients --- Gauss hypergeometric function --- confluent hypergeometric function --- Appell's functions --- incomplete fractional calculus --- Riemann-Liouville fractional integral --- generating functions --- fractional integrals --- fractional derivatives --- Mittag-Leffler functions --- field spectrum --- fractional calculus --- desert soil --- available potassium --- correlation analysis --- Post-Exposure Prophylaxis --- latent reservoir --- HIV infection --- fractional order model --- multivalent functions --- close-to-convex functions --- uniformly starlike functions --- uniformly close-to-convex functions --- conic domains --- q-calculus --- differential subordination --- Janowski function --- cardioid domain --- limacon domain --- fractional order unknown input fuzzy observer --- fractional order Takagi-Sugeno models --- L2 optimization --- linear matrix inequalities --- unmeasurable premise variables --- global solutions --- fractional in time and space shallow-water system --- ψ-Caputo fractional derivative --- Hilfer fractional derivative --- Ulam stability --- pantograph differential equation --- nonlocal integral condition --- Miura transform --- soliton equations --- logarithm

Listing 1 - 9 of 9
Sort by