Listing 1 - 8 of 8 |
Sort by
|
Choose an application
669.15 --- Tool-steel --- High speed steel --- Machine-tools --- Steel --- Steel, High strength --- Tools --- Alloys of iron with elements other than carbon. Alloy steel. Alloyed cast iron. Ferroalloys --- Tool-steel. --- 669.15 Alloys of iron with elements other than carbon. Alloy steel. Alloyed cast iron. Ferroalloys
Choose an application
This book covers an important and frequently overlooked area of welding - the repair of moulds, tools and dies. Because two rather different trades overlap in this process - welding and toolmaking, the materials and techniques involved have tended to be obscured. For many years, toolmakers and tool users have had to rely on the small number of specialist welders who do understand exactly what welding repair involves and have the skills to carry it out.
Understanding the technical side of tool steels is frequently a problem for welders and understanding the practical side of welding can
Gas tungsten arc welding. --- Electric welding. --- Metal castings --- Tool-steel --- High speed steel --- Machine-tools --- Steel --- Steel, High strength --- Tools --- Arc welding --- Electric arc welding --- Resistance welding --- Spot welding --- Welding --- TIG-welding --- Tungsten arc welding --- Tungsten inert gas welding --- Electric welding --- Welding. --- Maintenance and repair. --- Chemistry --- Polymers and Plastics
Choose an application
Stainless steels represent a quite interesting material family, both from a scientific and commercial point of view, following to their excellent combination in terms of strength and ductility together with corrosion resistance. Thanks to such properties, stainless steels have been indispensable for the technological progress during the last century and their annual consumption increased faster than other materials. They find application in all these fields requiring good corrosion resistance together with ability to be worked into complex geometries. Despite to their diffusion as a consolidated materials, many research fields are active regarding the possibility to increase stainless steels mechanical properties and corrosion resistance by grain refinement or by alloying by interstitial elements. At the same time innovations are coming from the manufacturing process of such a family of materials, also including the possibility to manufacture them starting from metals powder for 3D printing. The Special Issue scope embraces interdisciplinary work covering physical metallurgy and processes, reporting about experimental and theoretical progress concerning microstructural evolution during processing, microstructure-properties relations, applications including automotive, energy and structural.
reversion --- iron alloys --- reverted austenite --- n/a --- corrosion --- microstructure --- scatter index --- stainless steel --- electron backscattered diffraction --- supermartensitic stainless steel --- metastable austenitic stainless steel --- additive manufacturing --- fatigue --- mechanical spectroscopy --- stainless steel alloys --- 304L stainless steel --- non-metallic inclusions --- deformation --- connection --- nitriding --- non-metallic inclusion --- welding --- phase diagrams --- S–N curves --- surface treatments --- mechanical properties --- fatigue strength --- stainless-steel structure --- Hertz theory --- phase transformation --- prestrain --- high-speed steel --- Cr martensitic steel --- repair --- superduplex stainless steels --- historic timber structures --- cold rolling --- VOD refining --- borides --- annealing --- welded joints --- hot deformation --- Ca treatment --- reinforcement --- electrolytic extraction --- laser powder bed fusion --- point defects --- innovation --- high-boron steel --- duplex stainless steel --- secondary phases --- formation mechanism --- kinetics model --- duplex stainless steels --- simulations --- electric current --- intermetallics --- medical applications --- electrically assisted annealing --- grain size --- stainless steels --- structural dynamics --- finite element explicit analysis --- S-N curves
Choose an application
Steels represent a quite interesting material family, both from scientific and commercial points of view, following many applications they can be devoted to. Following this, it is therefore essential to deeply understand the relations between properties and microstructure and how to drive them via a specific process. Despite their diffusion as a consolidated material, many research fields are active regarding new applications. In this framework, in particular, the role of heat treatments in obtaining complex microstructures is still quite an open matter, which is also thanks to the design of innovative heat treatments.This Special Issue embraces interdisciplinary work covering physical metallurgy and processes, reporting on experimental and theoretical progress concerning microstructural evolution during the heat treatment of steels.
Technology: general issues --- nitriding --- nitrocarburizing --- two-stage treatment --- process design --- compound layer --- white layer --- nitriding hardness depth --- steel-clad plate --- element diffusion --- microstructure --- mechanical properties --- high speed steel --- vacuum heat treatment --- plane strain fracture toughness --- residual stress --- creep --- stress relief --- welded rotor --- forged steels --- high-Cr steel --- austempering --- high silicon steel --- retained austenite --- pearlitic steel wire --- elongation to failure --- torsion --- reduction of area --- annealing --- low density steels --- forging --- kappa carbide --- FeCMnAl --- steel --- martensitic steel --- ε-carbide --- tempering --- hydrogen embrittlement --- mechanical strength --- inoculant --- materials design --- gear steel --- AlN precipitate --- carburization --- austenite grain size --- Zener pinning --- precipitation criterion --- boiling curve --- quenching severity --- boiling and quenching heat transfer --- metal quenching heat flow --- ultrafast heating annealing --- thermo-cycling annealing --- ultra-high strength steel --- auto-tempering --- martensite --- hole expansion ratio --- flash heating --- QP --- low carbon steel --- n/a
Choose an application
Steels represent a quite interesting material family, both from scientific and commercial points of view, following many applications they can be devoted to. Following this, it is therefore essential to deeply understand the relations between properties and microstructure and how to drive them via a specific process. Despite their diffusion as a consolidated material, many research fields are active regarding new applications. In this framework, in particular, the role of heat treatments in obtaining complex microstructures is still quite an open matter, which is also thanks to the design of innovative heat treatments.This Special Issue embraces interdisciplinary work covering physical metallurgy and processes, reporting on experimental and theoretical progress concerning microstructural evolution during the heat treatment of steels.
nitriding --- nitrocarburizing --- two-stage treatment --- process design --- compound layer --- white layer --- nitriding hardness depth --- steel-clad plate --- element diffusion --- microstructure --- mechanical properties --- high speed steel --- vacuum heat treatment --- plane strain fracture toughness --- residual stress --- creep --- stress relief --- welded rotor --- forged steels --- high-Cr steel --- austempering --- high silicon steel --- retained austenite --- pearlitic steel wire --- elongation to failure --- torsion --- reduction of area --- annealing --- low density steels --- forging --- kappa carbide --- FeCMnAl --- steel --- martensitic steel --- ε-carbide --- tempering --- hydrogen embrittlement --- mechanical strength --- inoculant --- materials design --- gear steel --- AlN precipitate --- carburization --- austenite grain size --- Zener pinning --- precipitation criterion --- boiling curve --- quenching severity --- boiling and quenching heat transfer --- metal quenching heat flow --- ultrafast heating annealing --- thermo-cycling annealing --- ultra-high strength steel --- auto-tempering --- martensite --- hole expansion ratio --- flash heating --- QP --- low carbon steel --- n/a
Choose an application
Steels represent a quite interesting material family, both from scientific and commercial points of view, following many applications they can be devoted to. Following this, it is therefore essential to deeply understand the relations between properties and microstructure and how to drive them via a specific process. Despite their diffusion as a consolidated material, many research fields are active regarding new applications. In this framework, in particular, the role of heat treatments in obtaining complex microstructures is still quite an open matter, which is also thanks to the design of innovative heat treatments.This Special Issue embraces interdisciplinary work covering physical metallurgy and processes, reporting on experimental and theoretical progress concerning microstructural evolution during the heat treatment of steels.
Technology: general issues --- nitriding --- nitrocarburizing --- two-stage treatment --- process design --- compound layer --- white layer --- nitriding hardness depth --- steel-clad plate --- element diffusion --- microstructure --- mechanical properties --- high speed steel --- vacuum heat treatment --- plane strain fracture toughness --- residual stress --- creep --- stress relief --- welded rotor --- forged steels --- high-Cr steel --- austempering --- high silicon steel --- retained austenite --- pearlitic steel wire --- elongation to failure --- torsion --- reduction of area --- annealing --- low density steels --- forging --- kappa carbide --- FeCMnAl --- steel --- martensitic steel --- ε-carbide --- tempering --- hydrogen embrittlement --- mechanical strength --- inoculant --- materials design --- gear steel --- AlN precipitate --- carburization --- austenite grain size --- Zener pinning --- precipitation criterion --- boiling curve --- quenching severity --- boiling and quenching heat transfer --- metal quenching heat flow --- ultrafast heating annealing --- thermo-cycling annealing --- ultra-high strength steel --- auto-tempering --- martensite --- hole expansion ratio --- flash heating --- QP --- low carbon steel
Choose an application
In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.
high speed steel --- n/a --- tempering --- microstructure. --- microstructure --- severe plastic deformation --- aging treatment --- indentation hardness --- Nb tube --- secondary recrystallization --- static mechanical behavior --- image analysis --- nanostructured coatings --- thin aluminum sheet --- precipitation behavior --- additive manufacturing --- Ti-6Al-4V alloy --- grain boundary --- property-microstructure-process relationship --- aeronautic applications --- inductive hot pressing --- fracture surface --- indentation modulus --- alloys --- intermetallic --- ultrafine grain --- columnar microstructure --- titanium composites --- multimodal --- steering knuckles --- ultra-fine grain --- damping --- process monitoring --- Al alloys --- tribology --- retained austenite --- mechanical properties --- texture inhomogeneity --- metal posts --- FEGSEM --- ?-platelet thickness --- anelasticity --- warm working --- dental materials --- computer-aided design (CAD) --- SEM --- high strength --- SEBM --- non-monotonic simple shear strains --- cavitation erosion --- aluminum film --- impact toughness --- wear --- mechanical property --- in situ secondary phases --- bainite rail --- corrosion resistance --- macro-instrumented indentation test --- EBM --- cryorolling --- aluminum alloy --- equal channel angular pressing --- microstructure inhomogeneity --- casting --- electron backscatter diffraction --- prediction model --- grain boundaries --- porosity --- texture --- high pressure die casting --- shear strain reversal --- finite element analysis --- thin films --- AZ91 alloy --- tensile properties --- tensile property --- Al 6061 alloys --- aging --- reduction --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- caliber-rolling --- shrinkage
Choose an application
Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, "Ironmaking and Steelmaking", released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.
artificial neural network --- n/a --- corrosion --- inclusion control --- steel-making --- simulation --- liquid steel --- phosphate capacity --- slag --- hydrogen --- TG analysis --- surface roughness --- iron sulfate --- shot peening --- refining kinetics --- iso-conversional method --- oxygen blast furnace --- Barkhausen noise --- gas flow rate --- ductile cast iron --- toughness --- self-reduction briquette --- Mg deoxidation --- phosphorus distribution ratio --- iron oxides --- phase analysis --- desiliconisation --- solid flow --- CaO/Al2O3 ratio --- surface depression --- carbothermal reduction --- rotary hearth furnace --- torrefied biomass --- hot metal pre-treatment --- inclusions --- microwaves --- ironmaking --- reactivity --- CaO–based slags --- high-aluminum iron ore --- oxides --- HPSR --- internal crack --- fluorapatite --- crystallization rate --- COREX --- liquid area --- Al addition --- Wilcox–Swailes coefficient --- plasma arc --- evaluation of coupling relationship --- penetration theory --- silicate crystals --- ionization degree --- pellet size --- prediction model --- continuous casting --- direct element method --- modified NPL model --- slag film --- volatile matter --- crystallite size --- Al-TRIP steel --- viscosity --- anosovite crystals --- slag formation --- CO2 emissions --- integrated steel plant --- flow pattern --- high-heat-input welding --- dephosphorisation --- copper stave --- direct reduction --- shrinkage --- Cr recovery --- chemical composition --- high speed steel --- material flow --- 33MnCrTiB --- gas-based reduction --- converter --- bio-coal --- flat steel --- sulfur distribution ratio --- cold experiment --- secondary refining process --- re-oxidation --- vaporization dephosphorization --- sulfide capacity --- electroslag cladding --- hydrogen attack --- oxygen steelmaking --- non-metallic inclusions --- cracks --- non-contact measurement --- energy consumption --- high-manganese iron ore --- non-metallic inclusion --- Ca deoxidation --- Ca-treatment --- compressive strength (CS) --- oil-pipeline steel --- thermal treatment --- carbon monoxide --- composite roll --- crystallization behaviors --- devolatilization --- carbon-saturated iron --- steelmaking factory --- slag crust --- combustion --- high heat input welding --- ore-carbon briquette --- activation energy --- flow velocity --- kinetics --- hydrogen plasma --- casting speed --- solid and gaseous oxygen --- hercynite --- low fluorine --- iron ore pellets --- fayalite --- heat-affected zone --- CO–CO2 atmosphere --- and nitrogen --- smelting reduction --- high-phosphorus iron ore --- iron oxide --- mold flux --- BaO --- intragranular acicular ferrite --- carbon composite pellet --- electrolytic extraction --- iron ore --- carbon dioxide --- agglomerate --- vanadium titano-magnetite --- emission spectrum --- static process model --- concentrate --- structure --- titanium slag --- bonding interface --- fork --- blast furnace --- reaction mechanism --- reduction --- synergistic reduction --- injection --- principal component analysis --- ultrafine particles exposure --- CaO-based slags --- Wilcox-Swailes coefficient --- CO-CO2 atmosphere
Listing 1 - 8 of 8 |
Sort by
|