Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
Choose an application
Henstock integralen --- Henstock integrales --- Henstock integrals --- Henstock-Kurzweil integral.
Choose an application
The main topics of this book are convergence and topologization. Integration on a compact interval on the real line is treated with Riemannian sums for various integration bases. General results are specified to a spectrum of integrations, including Lebesgue integration, the Denjoy integration in the restricted sense, the integrations introduced by Pfeffer and by Bongiorno, and many others. Morever, some relations between integration and differentiation are made clear.The book is self-contained. It is of interest to specialists in the field of real functions, and it can also be read by student
Lebesgue integral. --- Henstock-Kurzweil integral. --- Vector spaces. --- Linear spaces --- Linear vector spaces --- Algebras, Linear --- Functional analysis --- Vector analysis --- Gauge integral --- Generalized Riemann integral --- Henstock integrals --- HK integral --- Kurzweil-Henstock integral --- Kurzweil integral --- Riemann integral, Generalized --- Integrals, Generalized --- Integration, Lebesgue --- L-integral --- Lebesgue integration --- Lebesgue-Stieltjes integral --- Lebesgue's integral --- Stieltjes integral, Lebesgue --- -Integrals, Generalized --- Measure theory --- Henstock-Kurzweil integral --- Vector spaces
Choose an application
A presentation of the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. A basic knowledge of introductory real analysis is required of the reader.
Henstock-Kurzweil integral. --- Calculus. --- Analysis (Mathematics) --- Fluxions (Mathematics) --- Infinitesimal calculus --- Limits (Mathematics) --- Mathematical analysis --- Functions --- Geometry, Infinitesimal --- Gauge integral --- Generalized Riemann integral --- Henstock integrals --- HK integral --- Kurzweil-Henstock integral --- Kurzweil integral --- Riemann integral, Generalized --- Integrals, Generalized
Choose an application
Henstock-Kurzweil integral. --- Riesz spaces. --- Riesz vector spaces --- Vector lattices --- Lattice theory --- Vector spaces --- Gauge integral --- Generalized Riemann integral --- Henstock integrals --- HK integral --- Kurzweil-Henstock integral --- Kurzweil integral --- Riemann integral, Generalized --- Integrals, Generalized
Choose an application
The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Per
Henstock-Kurzweil integral. --- Lebesgue integral. --- Calculus, Integral. --- Integral calculus --- Differential equations --- Integration, Lebesgue --- L-integral --- Lebesgue integration --- Lebesgue-Stieltjes integral --- Lebesgue's integral --- Stieltjes integral, Lebesgue --- -Integrals, Generalized --- Measure theory --- Gauge integral --- Generalized Riemann integral --- Henstock integrals --- HK integral --- Kurzweil-Henstock integral --- Kurzweil integral --- Riemann integral, Generalized --- Integrals, Generalized
Choose an application
Ce Petit traité d’intégration développe une approche originale de l’intégrale. Cette approche, que l’on pourrait qualifier de globale, est due aux deux mathématiciens Jaroslaw Kurzweil et Ralph Henstock. L’enseignement de l’intégration se fait d’ordinaire en deux temps. On débute en proposant des approximations de l’aire située sous le graphe de la fonction sous la forme de sommes de Riemann, ce qui est bien adapté au calcul différentiel et intégral portant sur des fonctions régulières. On présente ensuite l’intégrale de Lebesgue en lien avec la théorie de la mesure. L’approche de Kurzweil et Henstock est proche de celle de Riemann, à cela près que le pas des subdivisions de l’intervalle pour le calcul de l’aire peut ne pas être constant. L’intérêt de cette méthode est de contenir la théorie de Lebesgue et d’être optimale pour le calcul différentiel. Ce livre concerne au premier chef les étudiants de mathématiques de tous les cycles (licence, master, préparation aux concours de l’enseignement…). Il intéressera également les enseignants de mathématiques ou de physique et, plus généralement, les ingénieurs et scientifiques qui font usage de la théorie de l’intégration.
Integration, Functional. --- Riemann integral. --- Henstock-Kurzweil integral. --- Riemann, Bernhard, --- Lebesgue, Henri Léon, --- Gauge integral --- Generalized Riemann integral --- Henstock integrals --- HK integral --- Kurzweil-Henstock integral --- Kurzweil integral --- Riemann integral, Generalized --- Integral, Riemann --- Functional integration --- Lebeg, Anri, --- Riemann, B. --- Riman, Georg Fridrikh Bernkhard, --- Riman, Bernkhard, --- Riemann, Georg Friedrich Bernhard, --- Integrals, Generalized --- Definite integrals --- Functional analysis --- Lebesgue, Henri, --- Functions of several complex variables. --- Fonctions de plusieurs variables complexes. --- Intégration de fonctions.
Listing 1 - 8 of 8 |
Sort by
|