Listing 1 - 5 of 5 |
Sort by
|
Choose an application
"In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for -stable-like processes even with 2 when the underlying spaces have walk dimensions larger than 2, which has been one of the major open problems in this area"--
Kernel functions. --- Probability theory and stochastic processes -- Markov processes -- Transition functions, generators and resolvents. --- Partial differential equations -- Parabolic equations and systems -- Heat kernel. --- Probability theory and stochastic processes -- Markov processes -- Jump processes. --- Potential theory -- Other generalizations -- Dirichlet spaces. --- Probability theory and stochastic processes -- Markov processes -- Continuous-time Markov processes on general state spaces. --- Probability theory and stochastic processes -- Markov processes -- Probabilistic potential theory.
Choose an application
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Algebraic geometry --- Algebraïsche meetkunde --- Geometry [Algebraic ] --- Géométrie algébrique --- Meetkunde [Algebraïsche ] --- Riemann-Roch theorema's --- Riemann-Roch thoerems --- Theoremes de Riemann-Roch --- Geometry, Algebraic. --- Riemann-Roch theorems. --- Theorems, Riemann-Roch --- Algebraic functions --- Geometry, Algebraic --- Geometry --- Addition. --- Adjoint. --- Alexander Grothendieck. --- Algebraic geometry. --- Analytic torsion. --- Arakelov theory. --- Asymptote. --- Asymptotic expansion. --- Asymptotic formula. --- Big O notation. --- Cartesian coordinate system. --- Characteristic class. --- Chern class. --- Chow group. --- Closed immersion. --- Codimension. --- Coherent sheaf. --- Cohomology. --- Combination. --- Commutator. --- Computation. --- Covariant derivative. --- Curvature. --- Derivative. --- Determinant. --- Diagonal. --- Differentiable manifold. --- Differential form. --- Dimension (vector space). --- Divisor. --- Domain of a function. --- Dual basis. --- E6 (mathematics). --- Eigenvalues and eigenvectors. --- Embedding. --- Endomorphism. --- Exact sequence. --- Exponential function. --- Generic point. --- Heat kernel. --- Injective function. --- Intersection theory. --- K-group. --- Levi-Civita connection. --- Line bundle. --- Linear algebra. --- Local coordinates. --- Mathematical induction. --- Morphism. --- Natural number. --- Neighbourhood (mathematics). --- Parameter. --- Projective space. --- Pullback (category theory). --- Pullback (differential geometry). --- Pullback. --- Riemannian manifold. --- Riemann–Roch theorem. --- Self-adjoint operator. --- Smoothness. --- Sobolev space. --- Stochastic calculus. --- Summation. --- Supertrace. --- Theorem. --- Transition function. --- Upper half-plane. --- Vector bundle. --- Volume form.
Choose an application
This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process. Charles Epstein and Rafe Mazzeo use an "integral kernel method" to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high co-dimensional strata of the boundary. Epstein and Mazzeo establish the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. They show that the semigroups defined by these operators have holomorphic extensions to the right half-plane. Epstein and Mazzeo also demonstrate precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.
Elliptic operators. --- Markov processes. --- Population biology --- Analysis, Markov --- Chains, Markov --- Markoff processes --- Markov analysis --- Markov chains --- Markov models --- Models, Markov --- Processes, Markov --- Stochastic processes --- Differential operators, Elliptic --- Operators, Elliptic --- Partial differential operators --- Mathematical models. --- 1-dimensional integral. --- Euclidean model problem. --- Euclidean space. --- Hlder space. --- Hopf boundary point. --- Kimura diffusion equation. --- Kimura diffusion operator. --- Laplace transform. --- Schauder estimate. --- WrightІisher geometry. --- adjoint operator. --- backward Kolmogorov equation. --- boundary behavior. --- degenerate elliptic operator. --- doubling. --- elliptic Kimura operator. --- elliptic equation. --- forward Kolmogorov equation. --- function space. --- general model problem. --- generalized Kimura diffusion. --- heat equation. --- heat kernel. --- higher dimensional corner. --- higher regularity. --- holomorphic semi-group. --- homogeneous Cauchy problem. --- hybrid space. --- hypersurface boundary. --- induction hypothesis. --- induction. --- inhomogeneous problem. --- irregular solution. --- long time asymptotics. --- long-time behavior. --- manifold with corners. --- martingale problem. --- mathematical finance. --- model problem. --- normal form. --- normal vector. --- null-space. --- off-diagonal behavior. --- open orthant. --- parabolic equation. --- perturbation theory. --- polyhedron. --- population genetics. --- probability theory. --- regularity. --- resolvent operator. --- semi-group. --- solution operator. --- uniqueness.
Choose an application
This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give the proper functional analytic setting in order to study this operator and develop a pseudodifferential calculus, which provides estimates on the hypoelliptic Laplacian's resolvent. When the deformation parameter tends to zero, the hypoelliptic Laplacian converges to the standard Hodge Laplacian of the base by a collapsing argument in which the fibers of the cotangent bundle collapse to a point. For the local index theory, small time asymptotics for the supertrace of the associated heat kernel are obtained. The Ray-Singer analytic torsion of the hypoelliptic Laplacian as well as the associated Ray-Singer metrics on the determinant of the cohomology are studied in an equivariant setting, resulting in a key comparison formula between the elliptic and hypoelliptic analytic torsions.
Differential equations, Hypoelliptic. --- Laplacian operator. --- Metric spaces. --- Spaces, Metric --- Operator, Laplacian --- Hypoelliptic differential equations --- Generalized spaces --- Set theory --- Topology --- Differential equations, Partial --- Alexander Grothendieck. --- Analytic function. --- Asymptote. --- Asymptotic expansion. --- Berezin integral. --- Bijection. --- Brownian dynamics. --- Brownian motion. --- Chaos theory. --- Chern class. --- Classical Wiener space. --- Clifford algebra. --- Cohomology. --- Combination. --- Commutator. --- Computation. --- Connection form. --- Coordinate system. --- Cotangent bundle. --- Covariance matrix. --- Curvature tensor. --- Curvature. --- De Rham cohomology. --- Derivative. --- Determinant. --- Differentiable manifold. --- Differential operator. --- Dirac operator. --- Direct proof. --- Eigenform. --- Eigenvalues and eigenvectors. --- Ellipse. --- Embedding. --- Equation. --- Estimation. --- Euclidean space. --- Explicit formula. --- Explicit formulae (L-function). --- Feynman–Kac formula. --- Fiber bundle. --- Fokker–Planck equation. --- Formal power series. --- Fourier series. --- Fourier transform. --- Fredholm determinant. --- Function space. --- Girsanov theorem. --- Ground state. --- Heat kernel. --- Hilbert space. --- Hodge theory. --- Holomorphic function. --- Holomorphic vector bundle. --- Hypoelliptic operator. --- Integration by parts. --- Invertible matrix. --- Logarithm. --- Malliavin calculus. --- Martingale (probability theory). --- Matrix calculus. --- Mellin transform. --- Morse theory. --- Notation. --- Parameter. --- Parametrix. --- Parity (mathematics). --- Polynomial. --- Principal bundle. --- Probabilistic method. --- Projection (linear algebra). --- Rectangle. --- Resolvent set. --- Ricci curvature. --- Riemann–Roch theorem. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Sign convention. --- Smoothness. --- Sobolev space. --- Spectral theory. --- Square root. --- Stochastic calculus. --- Stochastic process. --- Summation. --- Supertrace. --- Symmetric space. --- Tangent space. --- Taylor series. --- Theorem. --- Theory. --- Torus. --- Trace class. --- Translational symmetry. --- Transversality (mathematics). --- Uniform convergence. --- Variable (mathematics). --- Vector bundle. --- Vector space. --- Wave equation.
Choose an application
Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses.Originally published in 1978.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometric measure theory. --- Surfaces. --- Curvature. --- Measure theory --- Calculus --- Curves --- Surfaces --- Curved surfaces --- Geometry --- Shapes --- Affine transformation. --- Approximation. --- Asymptote. --- Barrier function. --- Besicovitch covering theorem. --- Big O notation. --- Bounded set (topological vector space). --- Boundedness. --- Calculation. --- Cauchy–Schwarz inequality. --- Characteristic function (probability theory). --- Compactness theorem. --- Completing the square. --- Concave function. --- Convex set. --- Convolution. --- Crystal structure. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Domain of a function. --- Dyadic rational. --- Equivalence relation. --- Estimation. --- Euclidean space. --- Existential quantification. --- Exterior (topology). --- First variation. --- Gaussian curvature. --- Geometry. --- Grain boundary. --- Graph of a function. --- Grassmannian. --- Harmonic function. --- Hausdorff measure. --- Heat equation. --- Heat kernel. --- Heat transfer. --- Homotopy. --- Hypersurface. --- Hölder's inequality. --- Infimum and supremum. --- Initial condition. --- Lebesgue measure. --- Lebesgue point. --- Linear space (geometry). --- Lipschitz continuity. --- Mean curvature. --- Melting point. --- Microstructure. --- Monotonic function. --- Natural number. --- Nonparametric statistics. --- Order of integration (calculus). --- Order of integration. --- Order of magnitude. --- Parabolic partial differential equation. --- Paraboloid. --- Partial differential equation. --- Permutation. --- Perpendicular. --- Pointwise. --- Probability. --- Quantity. --- Quotient space (topology). --- Radon measure. --- Regularity theorem. --- Retract. --- Rewriting. --- Riemannian manifold. --- Right angle. --- Second derivative. --- Sectional curvature. --- Semi-continuity. --- Smoothness. --- Subsequence. --- Subset. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Topology. --- Total curvature. --- Translational symmetry. --- Uniform boundedness. --- Unit circle. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Varifold. --- Vector field. --- Weight function. --- Without loss of generality.
Listing 1 - 5 of 5 |
Sort by
|