Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law
Choose an application
About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals.This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Maxwell's demon. --- Adiabatic process. --- Automaton. --- Available energy (particle collision). --- Billiard-ball computer. --- Black hole information paradox. --- Black hole thermodynamics. --- Black-body radiation. --- Boltzmann's entropy formula. --- Boyle's law. --- Calculation. --- Carnot's theorem (thermodynamics). --- Catalysis. --- Chaos theory. --- Computation. --- Copying. --- Creation and annihilation operators. --- Digital physics. --- Dissipation. --- Distribution law. --- Domain wall. --- EPR paradox. --- Energy level. --- Entropy of mixing. --- Entropy. --- Exchange interaction. --- Expectation value (quantum mechanics). --- Extrapolation. --- Fair coin. --- Fermi–Dirac statistics. --- Gibbs free energy. --- Gibbs paradox. --- Guessing. --- Halting problem. --- Hamiltonian mechanics. --- Heat engine. --- Heat. --- Helmholtz free energy. --- Ideal gas. --- Idealization. --- Information theory. --- Instant. --- Internal energy. --- Irreversible process. --- James Prescott Joule. --- Johnson–Nyquist noise. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Least squares. --- Loschmidt's paradox. --- Ludwig Boltzmann. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Measurement. --- Mechanical equivalent of heat. --- Microscopic reversibility. --- Molecule. --- Negative temperature. --- Negentropy. --- Newton's law of universal gravitation. --- Nitrous oxide. --- Non-equilibrium thermodynamics. --- Old quantum theory. --- Particle in a box. --- Perpetual motion. --- Photon. --- Probability. --- Quantity. --- Quantum limit. --- Quantum mechanics. --- Rectangular potential barrier. --- Result. --- Reversible computing. --- Reversible process (thermodynamics). --- Richard Feynman. --- Rolf Landauer. --- Rudolf Clausius. --- Scattering. --- Schrödinger equation. --- Second law of thermodynamics. --- Self-information. --- Spontaneous process. --- Standard state. --- Statistical mechanics. --- Superselection. --- Temperature. --- Theory of heat. --- Theory. --- Thermally isolated system. --- Thermodynamic equilibrium. --- Thermodynamic system. --- Thought experiment. --- Turing machine. --- Ultimate fate of the universe. --- Uncertainty principle. --- Unitarity (physics). --- Van der Waals force. --- Wave function collapse. --- Work output.
Choose an application
The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.
Economics, finance, business & management --- macroentropy --- microentropy --- endoreversible engine --- reversible computing --- Landauer’s principle --- piston motion optimization --- endoreversible thermodynamics --- stirling engine --- irreversibility --- power --- efficiency --- optimization --- generalized radiative heat transfer law --- optimal motion path --- maximum work output --- elimination method --- finite time thermodynamics --- thermodynamics --- economics --- optimal processes --- n/a --- averaged --- heat transfer --- cyclic mode --- simulation --- modeling --- reconstruction --- nonequilibrium thermodynamics --- entropy production --- contact temperature --- quantum thermodynamics --- maximum power --- shortcut to adiabaticity --- quantum friction --- Otto cycle --- quantum engine --- quantum refrigerator --- finite-time thermodynamics --- sulfuric acid decomposition --- tubular plug-flow reactor --- entropy generation rate --- SO2 yield --- multi-objective optimization --- optimal control --- thermodynamic cycles --- thermodynamic length --- hydrogen atom --- nano-size engines --- a-thermal cycle --- heat engines --- cooling --- very long timescales --- slow time --- ideal gas law --- new and modified variables --- Silicon–Germanium alloys --- minimum of thermal conductivity --- efficiency of thermoelectric systems --- minimal energy dissipation --- radiative energy transfer --- radiative entropy transfer --- two-stream grey atmosphere --- energy flux density --- entropy flux density --- generalized winds --- conservatively perturbed equilibrium --- extreme value --- momentary equilibrium --- information geometry of thermodynamics --- thermodynamic curvature --- critical phenomena --- binary fluids --- van der Waals equation --- quantum heat engine --- carnot cycle --- otto cycle --- multiobjective optimization --- Pareto front --- stability --- maximum power regime --- entropy behavior --- biophysics --- biochemistry --- dynamical systems --- diversity --- complexity --- path information --- calorimetry --- entropy flow --- biological communities --- reacting systems --- Landauer's principle --- Silicon-Germanium alloys
Choose an application
Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.
n/a --- thermal performance --- microbubble pump --- particle deposition --- flow oscillation --- orthogonal jet --- flat plate --- gas turbine engine --- air heater --- flow behavior --- transonic compressor --- friction factor --- nonlinear thermal radiation --- oscillators --- porous cavity --- POD --- turbulent flow --- thermosyphon --- turbulence --- mass transfer --- tip leakage flow --- capture efficiency --- pipe flow --- correlation --- decomposition dimensionalities --- heat transfer --- pressure loss --- CANDU-6 --- numerical modeling --- CFD --- magnetic field --- boundary layer --- two-phase flow --- heat transfer performance --- Colebrook-White --- computational burden --- phase change --- surrogate model --- Padé polynomials --- traveling-wave heat engine --- flow regime --- numerical simulation --- energetics --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- pumps --- BEM --- SPIV --- acoustic streaming --- microbubbles --- Aspen® --- push-pull --- Positive Temperature Coefficient (PTC) elements --- iterative procedure --- transient analysis --- spiral fin-tube --- toxic gases --- unsteady heat release rate --- water hammer --- method of moment --- visualization --- superheated steam --- impingement heat transfer enhancement --- X-ray microtomography --- moderator --- wind turbine --- flow rate --- fin-tube --- flue gas --- actuator disc --- temperature distributions --- supercritical LNG --- sharp sections --- moment of inertia --- Colebrook equation --- pump efficiency --- tower --- OpenFOAM --- computational fluid dynamics --- chemical reaction --- pump performance --- logarithms --- numerical results --- downwind --- thermodynamic --- triaxial stress --- flow friction --- energy conversion --- entropy generation --- zigzag type --- inertance-compliance --- section aspect ratios --- laminar separation bubble --- axial piston pumps --- thermogravimetry --- pressure drop --- load resistances --- vortex breakdown --- T-section prism --- flow-induced motion --- centrifugal pump --- load --- vortex identification --- decomposition region --- condensation --- performance characteristics --- pipes --- detached-eddy simulation --- Computational Fluid Dynamics (CFD) simulation --- thermal cracking --- real vehicle experiments --- bubble size --- thermal energy recovery --- hydraulic resistances --- concentration --- tower shadow --- fire-spreading characteristics --- thermoacoustic electricity generator --- bubble generation --- multi-stage --- thermal effect --- ferrofluid --- PHWR --- fluidics --- multiphase flow --- printed circuit heat exchanger --- particle counter --- dew point temperature --- Padé polynomials
Listing 1 - 6 of 6 |
Sort by
|