Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
Gases. --- Liquids. --- Heat capacity --- Heat capacity
Choose an application
Expansion of solids. --- Elasticity. --- Cryogenics --- Expansion --- Heat capacity --- Solids --- Thermodynamics
Choose an application
Choose an application
Alloys --- Elasticity. --- Electric properties. --- Magnetic properties. --- Composites --- Cryogenics --- Expansion --- Fracture (materials) --- Heat capacity --- Martensitic structure --- Mechanical properties --- Superconductors --- Thermal conductivity --- Cryogenics --- Expansion --- Fracture (materials) --- Heat capacity --- Martensitic structure --- Mechanical properties --- Superconductors --- Thermal conductivity
Choose an application
The world’s energy demand is still growing, partly due to the rising population, partly to increasing personal needs. This growing demand has to be met without increasing (or preferably, by decreasing) the environmental impact. One of the ways to do so is the use of existing low-temperature heat sources for producing electricity, such as using power plants based on the organic Rankine cycle (ORC) . In ORC power plants, instead of the traditional steam, the vapor of organic materials (with low boiling points) is used to turn heat to work and subsequently to electricity. These units are usually less efficient than steam-based plants; therefore, they should be optimized to be technically and economically feasible. The selection of working fluid for a given heat source is crucial; a particular working fluid might be suitable to harvest energy from a 90 ℃ geothermal well but would show disappointing performance for well with a 80 ℃ head temperature. The ORC working fluid for a given heat source is usually selected from a handful of existing fluids by trial-and-error methods; in this collection, we demonstrate a more systematic method based on physical and chemical criteria.
History of engineering & technology --- adiabatic expansion --- isentropic expansion --- T-s diagram --- working fluid classification --- optimization --- single-screw expander --- vapor–liquid two-phase expansion --- thermal efficiency --- net work output --- heat exchange load of condenser --- cis-butene --- HFO-1234ze(E) --- ORC working fluids --- temperature–entropy saturation curve --- saturation properties --- wet and dry fluids --- ideal-gas heat capacity --- Rankine cycle --- ORC --- biomass --- fluid mixtures --- hydrocarbons --- working fluid --- selection method --- volumetric expander --- thermodynamic analysis --- wet zeotropic mixture --- single screw expander --- organic Rankine cycle --- R441A --- R436B --- R432A --- T–s diagram --- molecular degree of freedom
Choose an application
Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.
molecular magnetism --- phase diagram --- superconductivity --- molecular magnets --- magnetism --- thermodynamics --- ?-d system --- cyclam --- critical behaviour --- redox --- exact diagonalization --- salicylamidoxime --- thermodynamic measurement --- magnetic conductor --- quantum magnet --- radical anion --- single crystal heat capacity measurement --- effect of high pressure --- square lattice --- single-molecule magnets --- cyano bridge --- Berezinskii-Kosterlitz-Thouless phase transition --- coordination polymers --- Prussian blue analogues --- chain --- antiferromagnetism --- dioxothiadiazole --- inelastic neutron scattering --- spin anisotropy --- rectangular lattice --- superexchange interaction --- Heisenberg exchange Hamiltonian --- Heisenberg --- S = 1/2 XXZ model --- antiferromagnetic coupling --- manganese(III) --- spin clusters --- magnetic properties --- magnetocaloric effect --- crystal structure --- copper(II) --- octacyanotungstate(V) --- octacyanometallates
Choose an application
The world’s energy demand is still growing, partly due to the rising population, partly to increasing personal needs. This growing demand has to be met without increasing (or preferably, by decreasing) the environmental impact. One of the ways to do so is the use of existing low-temperature heat sources for producing electricity, such as using power plants based on the organic Rankine cycle (ORC) . In ORC power plants, instead of the traditional steam, the vapor of organic materials (with low boiling points) is used to turn heat to work and subsequently to electricity. These units are usually less efficient than steam-based plants; therefore, they should be optimized to be technically and economically feasible. The selection of working fluid for a given heat source is crucial; a particular working fluid might be suitable to harvest energy from a 90 ℃ geothermal well but would show disappointing performance for well with a 80 ℃ head temperature. The ORC working fluid for a given heat source is usually selected from a handful of existing fluids by trial-and-error methods; in this collection, we demonstrate a more systematic method based on physical and chemical criteria.
adiabatic expansion --- isentropic expansion --- T-s diagram --- working fluid classification --- optimization --- single-screw expander --- vapor–liquid two-phase expansion --- thermal efficiency --- net work output --- heat exchange load of condenser --- cis-butene --- HFO-1234ze(E) --- ORC working fluids --- temperature–entropy saturation curve --- saturation properties --- wet and dry fluids --- ideal-gas heat capacity --- Rankine cycle --- ORC --- biomass --- fluid mixtures --- hydrocarbons --- working fluid --- selection method --- volumetric expander --- thermodynamic analysis --- wet zeotropic mixture --- single screw expander --- organic Rankine cycle --- R441A --- R436B --- R432A --- T–s diagram --- molecular degree of freedom
Choose an application
The overarching goal of this book is to provide a current picture of the latest developments in the capabilities of biomedical photoacoustic imaging and sensing in an affordable setting, such as advances in the technology involving light sources, and delivery, acoustic detection, and image reconstruction and processing algorithms. This book includes 14 chapters from globally prominent researchers , covering a comprehensive spectrum of photoacoustic imaging topics from technology developments and novel imaging methods to preclinical and clinical studies, predominantly in a cost-effective setting. Affordability is undoubtedly an important factor to be considered in the following years to help translate photoacoustic imaging to clinics around the globe. This first-ever book focused on biomedical photoacoustic imaging and sensing using affordable resources is thus timely, especially considering the fact that this technique is facing an exciting transition from benchtop to bedside. Given its scope, the book will appeal to scientists and engineers in academia and industry, as well as medical experts interested in the clinical applications of photoacoustic imaging.
photoacoustic microscopy --- ultrasonic transducer --- optical-resolution photoacoustic microscopy --- transparent ultrasound transducer --- ultrasound stimulation --- photoacoustic --- LED --- clinic --- optical imaging --- tomography --- ultrasound --- small animal --- liver --- fibrosis --- optoacoustic --- spectral imaging --- blind source separation --- unsupervised unmixing --- photoacoustic imaging --- 3-D printed photoacoustic probe holder --- light delivery optimization --- LED divergence --- illumination scheme --- in vivo --- mouse --- Monte Carlo --- linear array --- tumor imaging --- LED-based photoacoustic imaging --- hair follicles --- FUE --- FUT --- photoacoustic computed tomography --- light-emitting diodes --- laser diodes --- oxygen saturation imaging --- photoacoustics --- fluence compensation --- hypoxia --- deep tissue imaging --- hemangioma --- laser --- light-emitting diodes (LED) --- mobile health --- peripheral arterial disease --- stroke --- vascular malformations --- signal enhancement --- pre-illumination --- photo-thermal effect --- heat capacity --- remote sensing --- endoscopy --- speckle --- n/a
Choose an application
Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.
molecular magnetism --- phase diagram --- superconductivity --- molecular magnets --- magnetism --- thermodynamics --- ?-d system --- cyclam --- critical behaviour --- redox --- exact diagonalization --- salicylamidoxime --- thermodynamic measurement --- magnetic conductor --- quantum magnet --- radical anion --- single crystal heat capacity measurement --- effect of high pressure --- square lattice --- single-molecule magnets --- cyano bridge --- Berezinskii-Kosterlitz-Thouless phase transition --- coordination polymers --- Prussian blue analogues --- chain --- antiferromagnetism --- dioxothiadiazole --- inelastic neutron scattering --- spin anisotropy --- rectangular lattice --- superexchange interaction --- Heisenberg exchange Hamiltonian --- Heisenberg --- S = 1/2 XXZ model --- antiferromagnetic coupling --- manganese(III) --- spin clusters --- magnetic properties --- magnetocaloric effect --- crystal structure --- copper(II) --- octacyanotungstate(V) --- octacyanometallates
Choose an application
This Special Issue reprint presents articles from researchers working on materials processing via electron beams as well as on their characterization, properties, and applications. The articles presented cover various topics, including metal melting and welding, additive manufacturing, electron beam irradiation, electron beam lithography, process modeling, etc.
electron-beam welding --- welded metal structure --- dynamic positioning of an electron beam --- electron beam --- additive manufacturing --- titanium alloys --- wire feed process --- residual stresses --- mechanical properties --- EBI --- γ-ray --- GC-MS --- FT-IR --- larch sapwood --- wood extractives --- melting --- melting temperature --- numerical simulation --- electron beam additive manufacturing --- nanoindentation --- strain rate sensitivity --- creep --- corn starch --- potato starch --- moisture content --- specific heat capacity --- pH --- color parameters --- copper technogenic material --- thermodynamic analysis --- removal efficiency --- patterned sapphire substrate --- electron etching --- gold --- cathodoluminescent analysis --- anisotropy --- light-emitting diodes --- windows --- electron beam welding --- aluminum 6082 --- porosity --- beam figure --- electron-beam lithography --- Monte Carlo method --- proximity function --- electrons scattering --- technogenic Co–Cr–Mo alloy --- electron beam recycling --- refining process --- degree of removal
Listing 1 - 10 of 25 | << page >> |
Sort by
|