Narrow your search
Listing 1 - 10 of 10
Sort by

Book
Thinning control.
Author:
ISBN: 011710194X Year: 1985 Publisher: London : Her Majesty's Stationery Office,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Hierarchical levels in agro-ecosystems : selective case studies on water and nitrogen.
Author:
ISBN: 9054856572 Year: 1997 Publisher: Wageningen : Landbouwuniversiteit Wageningen,


Dissertation
Nutrient and water dynamics in rotational woodlots : A case study in western Tanzania.
Author:
ISBN: 9058089940 Year: 2004 Publisher: Wageningen : Wageningen University,


Dissertation
Contribution à l'élaboration du bilan carboné d'une culture de froment d'hiver (Triticum aestivum sp.) : Suivi du développement et de la biomasse.
Authors: --- ---
Year: 2006


Book
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rising shortage of water resources in crop-producing regions worldwide and the need for irrigation optimisation call for sustainable water savings. The allocation of irrigation water will be an ever-increasing source of pressure because of vast agricultural demands under changing climatic conditions. Consequently, irrigation has to be closely linked with water-use efficiency with the aim of boosting productivity and improving food quality, singularly in those regions where problems of water shortages or collection and delivery are widespread. The present Special Issue (SI) showcases 19 original contributions, addressing water-use efficiency in the context of sustainable irrigation management to meet water scarcity conditions. These papers cover a wide range of subjects including (i) interaction mineral nutrition and irrigation in horticultural crops, (ii) sustainable irrigation in woody fruit crops, (iii) medicinal plants, (iv) industrial crops, and (v) other topics devoted to remote sensing techniques and crop water requirements, genotypes for drought tolerance, and agricultural management. The studies were carried out in both field and laboratory surveys, with modelling studies also being conducted, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this SI updates on and provides a relevant contribution for efficient saving water resources.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- fruit size --- Manzanilla --- olive --- regulated deficit irrigation --- water potential --- water relation --- leaf area --- Manihot esculenta --- photosynthesis --- tuber --- water status --- antioxidant capacity --- bioactive compounds --- growth --- hydroxycinnamic acids --- hydroponics --- preformed plastic mulch film --- crop water productivity --- biodegradation --- crop productivity --- spray-on mulch --- water use efficiency --- almond cultivars --- crop physiological response --- irrigation water productivity --- nut yield --- drip irrigation --- silicon --- mineral nutrients --- oxidative stress --- osmolytes --- yield --- Zea mays --- ERP --- GIS --- internet of things --- precision agriculture --- quality --- environment --- water --- software --- platform --- web application --- crop coefficient --- drought stress --- evapotranspiration --- maize --- water productivity --- Prunus dulcis --- Vairo --- water stress --- sustained deficit irrigation --- quality markers --- leaf greenness index --- root morphology --- almond quality --- sustainability --- marketability --- semiarid Mediterranean environment --- root components --- yield components --- fruit quality --- deficit irrigation --- leaf area index --- harvest index --- photosynthetic rate --- transpiration rate --- greenhouse --- in vitro culture --- apple --- cherries --- midday stem water potential --- sap flow --- stomatal conductance --- FDR probes and daily fraction of intercepted photosynthetically active radiation --- abiotic stress --- Linum album Ky. ex Boiss. --- morphological properties --- phenology --- pigments --- diversity --- root length density --- root weight density --- root-shoot relationships --- benefit-cost ratio --- nitrogen --- root growth --- tomato --- water saving --- Jerusalem artichoke --- mineral fertilization --- irrigation --- diseases --- fungi --- crop suitability --- remote sensing --- ALES-Arid --- SEBAL --- landsat --- crop-water requirements --- smart farming --- crop-production functions --- food quality --- crop physiological response to drought scenarios --- fruit size --- Manzanilla --- olive --- regulated deficit irrigation --- water potential --- water relation --- leaf area --- Manihot esculenta --- photosynthesis --- tuber --- water status --- antioxidant capacity --- bioactive compounds --- growth --- hydroxycinnamic acids --- hydroponics --- preformed plastic mulch film --- crop water productivity --- biodegradation --- crop productivity --- spray-on mulch --- water use efficiency --- almond cultivars --- crop physiological response --- irrigation water productivity --- nut yield --- drip irrigation --- silicon --- mineral nutrients --- oxidative stress --- osmolytes --- yield --- Zea mays --- ERP --- GIS --- internet of things --- precision agriculture --- quality --- environment --- water --- software --- platform --- web application --- crop coefficient --- drought stress --- evapotranspiration --- maize --- water productivity --- Prunus dulcis --- Vairo --- water stress --- sustained deficit irrigation --- quality markers --- leaf greenness index --- root morphology --- almond quality --- sustainability --- marketability --- semiarid Mediterranean environment --- root components --- yield components --- fruit quality --- deficit irrigation --- leaf area index --- harvest index --- photosynthetic rate --- transpiration rate --- greenhouse --- in vitro culture --- apple --- cherries --- midday stem water potential --- sap flow --- stomatal conductance --- FDR probes and daily fraction of intercepted photosynthetically active radiation --- abiotic stress --- Linum album Ky. ex Boiss. --- morphological properties --- phenology --- pigments --- diversity --- root length density --- root weight density --- root-shoot relationships --- benefit-cost ratio --- nitrogen --- root growth --- tomato --- water saving --- Jerusalem artichoke --- mineral fertilization --- irrigation --- diseases --- fungi --- crop suitability --- remote sensing --- ALES-Arid --- SEBAL --- landsat --- crop-water requirements --- smart farming --- crop-production functions --- food quality --- crop physiological response to drought scenarios


Book
Renewable Energy Production from Energy Crops and Agricultural Residues
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energies is open to submissions for a Special Issue on “Renewable Energy Production from Energy Crops and Agricultural Residues”. Biomass represents an important source of renewable and sustainable energy production. Its increasing consumption is mainly related to the increase in global energy demand and fossil fuel prices, but also to a lower environmental impact compared to non-renewable fuels. These factors take RED II directives into consideration. In the past, forestry interventions were the main supply source of biomass, but in recent decades two others sources have entered the international scene. These are dedicated energy crops and agricultural residues, which are important sources of biomass for biofuel and bioenergy. Below, we consider four main value chains: • Oil crops: Oil production from non-food oilseed crops (such as camelina, Crambe, safflower, castor, cuphea, cardoon, etc.), oil extraction, and oil utilization for fuel production. • Lignocellulosic crops: Biomass production from perennial grasses (miscanthus, giant reed, switchgrass, reed canary grass, etc.), woody crops (willow, poplar, Robinia, eucalyptus, etc.), and agricultural residues (pruning, maize cob, maize stalks, wheat chaff, sugar cane straw, etc.), considering two main transformation systems: 1. Electricity/heat production 2. Second-generation ethanol production • Carbohydrate crops (cereals, sweet sorghum, sugar beets, sugar cane, etc.) for ethanol production. • Fermentable crops (maize, barley, triticale, Sudan grass, sorghum, etc.) and agricultural residues (chaff, maize stalks and cob, fruit and vegetable waste, etc.) for production of biogas and/or biomethane.

Keywords

Research & information: general --- Technology: general issues --- bioenergy --- crop by-products --- harvesting methods --- maize cob --- wheat chaff --- combine harvesting --- olive groves --- pruning --- stationary chipper --- harvesting system --- hog fuel --- pruning supply chain --- populus --- biomass --- yield energy value --- lower heating value --- ash content --- sulphur --- circular bioeconomy --- oil crops --- agricultural residues --- thermophysical and chemical features --- wheat --- straw --- weed seed --- biocommodity --- threshing --- pruning harvesting --- biomass quality --- slope --- work productivity --- bioresource --- cereals --- commodity --- harvest index --- staple foods --- triticum --- Miscanthus x giganteus --- environmental impact --- agricultural production --- digestate --- eucalyptus --- woody biomass --- storage of fine wood chips --- moisture content --- calorific value --- dry matter loss --- Eucalyptus --- tree whole stem --- firewood logs --- storage system --- renewable energy --- harvesting --- suitable areas --- Central Italy --- Corine Land Cover --- short rotation coppice --- Salix --- genotype × site interaction --- nitrogen content --- sulphur content --- willow biomass --- soil organic carbon --- life cycle assessment --- spatial analysis --- greenhouse gas emissions --- energy return on investment --- lignocellulosic biomass --- hydrothermal pretreatment --- enzymatic hydrolysis --- sugar yield --- high-performance liquid chromatography (HPLC) analysis --- externalities --- economic analysis --- willow biomass production --- new varieties --- sustainable production --- renewable energy sources --- biofuels --- agriculture residues --- forecasting --- modelling --- Poland --- work performance --- harvesting loss --- fuelwood --- cable yarder --- CO2 emission --- pine plantations --- time study --- energy efficiency --- agroenvironmental mapping --- energy crop --- Jatropha curcas L. --- land suitability --- bio-based supply chains --- integrated biomass logistical center --- mixed integer programming model --- bioenergy --- crop by-products --- harvesting methods --- maize cob --- wheat chaff --- combine harvesting --- olive groves --- pruning --- stationary chipper --- harvesting system --- hog fuel --- pruning supply chain --- populus --- biomass --- yield energy value --- lower heating value --- ash content --- sulphur --- circular bioeconomy --- oil crops --- agricultural residues --- thermophysical and chemical features --- wheat --- straw --- weed seed --- biocommodity --- threshing --- pruning harvesting --- biomass quality --- slope --- work productivity --- bioresource --- cereals --- commodity --- harvest index --- staple foods --- triticum --- Miscanthus x giganteus --- environmental impact --- agricultural production --- digestate --- eucalyptus --- woody biomass --- storage of fine wood chips --- moisture content --- calorific value --- dry matter loss --- Eucalyptus --- tree whole stem --- firewood logs --- storage system --- renewable energy --- harvesting --- suitable areas --- Central Italy --- Corine Land Cover --- short rotation coppice --- Salix --- genotype × site interaction --- nitrogen content --- sulphur content --- willow biomass --- soil organic carbon --- life cycle assessment --- spatial analysis --- greenhouse gas emissions --- energy return on investment --- lignocellulosic biomass --- hydrothermal pretreatment --- enzymatic hydrolysis --- sugar yield --- high-performance liquid chromatography (HPLC) analysis --- externalities --- economic analysis --- willow biomass production --- new varieties --- sustainable production --- renewable energy sources --- biofuels --- agriculture residues --- forecasting --- modelling --- Poland --- work performance --- harvesting loss --- fuelwood --- cable yarder --- CO2 emission --- pine plantations --- time study --- energy efficiency --- agroenvironmental mapping --- energy crop --- Jatropha curcas L. --- land suitability --- bio-based supply chains --- integrated biomass logistical center --- mixed integer programming model


Book
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rising shortage of water resources in crop-producing regions worldwide and the need for irrigation optimisation call for sustainable water savings. The allocation of irrigation water will be an ever-increasing source of pressure because of vast agricultural demands under changing climatic conditions. Consequently, irrigation has to be closely linked with water-use efficiency with the aim of boosting productivity and improving food quality, singularly in those regions where problems of water shortages or collection and delivery are widespread. The present Special Issue (SI) showcases 19 original contributions, addressing water-use efficiency in the context of sustainable irrigation management to meet water scarcity conditions. These papers cover a wide range of subjects including (i) interaction mineral nutrition and irrigation in horticultural crops, (ii) sustainable irrigation in woody fruit crops, (iii) medicinal plants, (iv) industrial crops, and (v) other topics devoted to remote sensing techniques and crop water requirements, genotypes for drought tolerance, and agricultural management. The studies were carried out in both field and laboratory surveys, with modelling studies also being conducted, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this SI updates on and provides a relevant contribution for efficient saving water resources.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- fruit size --- Manzanilla --- olive --- regulated deficit irrigation --- water potential --- water relation --- leaf area --- Manihot esculenta --- photosynthesis --- tuber --- water status --- antioxidant capacity --- bioactive compounds --- growth --- hydroxycinnamic acids --- hydroponics --- preformed plastic mulch film --- crop water productivity --- biodegradation --- crop productivity --- spray-on mulch --- water use efficiency --- almond cultivars --- crop physiological response --- irrigation water productivity --- nut yield --- drip irrigation --- silicon --- mineral nutrients --- oxidative stress --- osmolytes --- yield --- Zea mays --- ERP --- GIS --- internet of things --- precision agriculture --- quality --- environment --- water --- software --- platform --- web application --- crop coefficient --- drought stress --- evapotranspiration --- maize --- water productivity --- Prunus dulcis --- Vairo --- water stress --- sustained deficit irrigation --- quality markers --- leaf greenness index --- root morphology --- almond quality --- sustainability --- marketability --- semiarid Mediterranean environment --- root components --- yield components --- fruit quality --- deficit irrigation --- leaf area index --- harvest index --- photosynthetic rate --- transpiration rate --- greenhouse --- in vitro culture --- apple --- cherries --- midday stem water potential --- sap flow --- stomatal conductance --- FDR probes and daily fraction of intercepted photosynthetically active radiation --- abiotic stress --- Linum album Ky. ex Boiss. --- morphological properties --- phenology --- pigments --- diversity --- root length density --- root weight density --- root-shoot relationships --- benefit-cost ratio --- nitrogen --- root growth --- tomato --- water saving --- Jerusalem artichoke --- mineral fertilization --- irrigation --- diseases --- fungi --- crop suitability --- remote sensing --- ALES-Arid --- SEBAL --- landsat --- crop-water requirements --- smart farming --- crop-production functions --- food quality --- crop physiological response to drought scenarios


Book
Renewable Energy Production from Energy Crops and Agricultural Residues
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energies is open to submissions for a Special Issue on “Renewable Energy Production from Energy Crops and Agricultural Residues”. Biomass represents an important source of renewable and sustainable energy production. Its increasing consumption is mainly related to the increase in global energy demand and fossil fuel prices, but also to a lower environmental impact compared to non-renewable fuels. These factors take RED II directives into consideration. In the past, forestry interventions were the main supply source of biomass, but in recent decades two others sources have entered the international scene. These are dedicated energy crops and agricultural residues, which are important sources of biomass for biofuel and bioenergy. Below, we consider four main value chains: • Oil crops: Oil production from non-food oilseed crops (such as camelina, Crambe, safflower, castor, cuphea, cardoon, etc.), oil extraction, and oil utilization for fuel production. • Lignocellulosic crops: Biomass production from perennial grasses (miscanthus, giant reed, switchgrass, reed canary grass, etc.), woody crops (willow, poplar, Robinia, eucalyptus, etc.), and agricultural residues (pruning, maize cob, maize stalks, wheat chaff, sugar cane straw, etc.), considering two main transformation systems: 1. Electricity/heat production 2. Second-generation ethanol production • Carbohydrate crops (cereals, sweet sorghum, sugar beets, sugar cane, etc.) for ethanol production. • Fermentable crops (maize, barley, triticale, Sudan grass, sorghum, etc.) and agricultural residues (chaff, maize stalks and cob, fruit and vegetable waste, etc.) for production of biogas and/or biomethane.

Keywords

Research & information: general --- Technology: general issues --- bioenergy --- crop by-products --- harvesting methods --- maize cob --- wheat chaff --- combine harvesting --- olive groves --- pruning --- stationary chipper --- harvesting system --- hog fuel --- pruning supply chain --- populus --- biomass --- yield energy value --- lower heating value --- ash content --- sulphur --- circular bioeconomy --- oil crops --- agricultural residues --- thermophysical and chemical features --- wheat --- straw --- weed seed --- biocommodity --- threshing --- pruning harvesting --- biomass quality --- slope --- work productivity --- bioresource --- cereals --- commodity --- harvest index --- staple foods --- triticum --- Miscanthus x giganteus --- environmental impact --- agricultural production --- digestate --- eucalyptus --- woody biomass --- storage of fine wood chips --- moisture content --- calorific value --- dry matter loss --- Eucalyptus --- tree whole stem --- firewood logs --- storage system --- renewable energy --- harvesting --- suitable areas --- Central Italy --- Corine Land Cover --- short rotation coppice --- Salix --- genotype × site interaction --- nitrogen content --- sulphur content --- willow biomass --- soil organic carbon --- life cycle assessment --- spatial analysis --- greenhouse gas emissions --- energy return on investment --- lignocellulosic biomass --- hydrothermal pretreatment --- enzymatic hydrolysis --- sugar yield --- high-performance liquid chromatography (HPLC) analysis --- externalities --- economic analysis --- willow biomass production --- new varieties --- sustainable production --- renewable energy sources --- biofuels --- agriculture residues --- forecasting --- modelling --- Poland --- work performance --- harvesting loss --- fuelwood --- cable yarder --- CO2 emission --- pine plantations --- time study --- energy efficiency --- agroenvironmental mapping --- energy crop --- Jatropha curcas L. --- land suitability --- bio-based supply chains --- integrated biomass logistical center --- mixed integer programming model


Book
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rising shortage of water resources in crop-producing regions worldwide and the need for irrigation optimisation call for sustainable water savings. The allocation of irrigation water will be an ever-increasing source of pressure because of vast agricultural demands under changing climatic conditions. Consequently, irrigation has to be closely linked with water-use efficiency with the aim of boosting productivity and improving food quality, singularly in those regions where problems of water shortages or collection and delivery are widespread. The present Special Issue (SI) showcases 19 original contributions, addressing water-use efficiency in the context of sustainable irrigation management to meet water scarcity conditions. These papers cover a wide range of subjects including (i) interaction mineral nutrition and irrigation in horticultural crops, (ii) sustainable irrigation in woody fruit crops, (iii) medicinal plants, (iv) industrial crops, and (v) other topics devoted to remote sensing techniques and crop water requirements, genotypes for drought tolerance, and agricultural management. The studies were carried out in both field and laboratory surveys, with modelling studies also being conducted, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this SI updates on and provides a relevant contribution for efficient saving water resources.

Keywords

fruit size --- Manzanilla --- olive --- regulated deficit irrigation --- water potential --- water relation --- leaf area --- Manihot esculenta --- photosynthesis --- tuber --- water status --- antioxidant capacity --- bioactive compounds --- growth --- hydroxycinnamic acids --- hydroponics --- preformed plastic mulch film --- crop water productivity --- biodegradation --- crop productivity --- spray-on mulch --- water use efficiency --- almond cultivars --- crop physiological response --- irrigation water productivity --- nut yield --- drip irrigation --- silicon --- mineral nutrients --- oxidative stress --- osmolytes --- yield --- Zea mays --- ERP --- GIS --- internet of things --- precision agriculture --- quality --- environment --- water --- software --- platform --- web application --- crop coefficient --- drought stress --- evapotranspiration --- maize --- water productivity --- Prunus dulcis --- Vairo --- water stress --- sustained deficit irrigation --- quality markers --- leaf greenness index --- root morphology --- almond quality --- sustainability --- marketability --- semiarid Mediterranean environment --- root components --- yield components --- fruit quality --- deficit irrigation --- leaf area index --- harvest index --- photosynthetic rate --- transpiration rate --- greenhouse --- in vitro culture --- apple --- cherries --- midday stem water potential --- sap flow --- stomatal conductance --- FDR probes and daily fraction of intercepted photosynthetically active radiation --- abiotic stress --- Linum album Ky. ex Boiss. --- morphological properties --- phenology --- pigments --- diversity --- root length density --- root weight density --- root-shoot relationships --- benefit-cost ratio --- nitrogen --- root growth --- tomato --- water saving --- Jerusalem artichoke --- mineral fertilization --- irrigation --- diseases --- fungi --- crop suitability --- remote sensing --- ALES-Arid --- SEBAL --- landsat --- crop-water requirements --- smart farming --- crop-production functions --- food quality --- crop physiological response to drought scenarios


Book
Renewable Energy Production from Energy Crops and Agricultural Residues
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energies is open to submissions for a Special Issue on “Renewable Energy Production from Energy Crops and Agricultural Residues”. Biomass represents an important source of renewable and sustainable energy production. Its increasing consumption is mainly related to the increase in global energy demand and fossil fuel prices, but also to a lower environmental impact compared to non-renewable fuels. These factors take RED II directives into consideration. In the past, forestry interventions were the main supply source of biomass, but in recent decades two others sources have entered the international scene. These are dedicated energy crops and agricultural residues, which are important sources of biomass for biofuel and bioenergy. Below, we consider four main value chains: • Oil crops: Oil production from non-food oilseed crops (such as camelina, Crambe, safflower, castor, cuphea, cardoon, etc.), oil extraction, and oil utilization for fuel production. • Lignocellulosic crops: Biomass production from perennial grasses (miscanthus, giant reed, switchgrass, reed canary grass, etc.), woody crops (willow, poplar, Robinia, eucalyptus, etc.), and agricultural residues (pruning, maize cob, maize stalks, wheat chaff, sugar cane straw, etc.), considering two main transformation systems: 1. Electricity/heat production 2. Second-generation ethanol production • Carbohydrate crops (cereals, sweet sorghum, sugar beets, sugar cane, etc.) for ethanol production. • Fermentable crops (maize, barley, triticale, Sudan grass, sorghum, etc.) and agricultural residues (chaff, maize stalks and cob, fruit and vegetable waste, etc.) for production of biogas and/or biomethane.

Keywords

bioenergy --- crop by-products --- harvesting methods --- maize cob --- wheat chaff --- combine harvesting --- olive groves --- pruning --- stationary chipper --- harvesting system --- hog fuel --- pruning supply chain --- populus --- biomass --- yield energy value --- lower heating value --- ash content --- sulphur --- circular bioeconomy --- oil crops --- agricultural residues --- thermophysical and chemical features --- wheat --- straw --- weed seed --- biocommodity --- threshing --- pruning harvesting --- biomass quality --- slope --- work productivity --- bioresource --- cereals --- commodity --- harvest index --- staple foods --- triticum --- Miscanthus x giganteus --- environmental impact --- agricultural production --- digestate --- eucalyptus --- woody biomass --- storage of fine wood chips --- moisture content --- calorific value --- dry matter loss --- Eucalyptus --- tree whole stem --- firewood logs --- storage system --- renewable energy --- harvesting --- suitable areas --- Central Italy --- Corine Land Cover --- short rotation coppice --- Salix --- genotype × site interaction --- nitrogen content --- sulphur content --- willow biomass --- soil organic carbon --- life cycle assessment --- spatial analysis --- greenhouse gas emissions --- energy return on investment --- lignocellulosic biomass --- hydrothermal pretreatment --- enzymatic hydrolysis --- sugar yield --- high-performance liquid chromatography (HPLC) analysis --- externalities --- economic analysis --- willow biomass production --- new varieties --- sustainable production --- renewable energy sources --- biofuels --- agriculture residues --- forecasting --- modelling --- Poland --- work performance --- harvesting loss --- fuelwood --- cable yarder --- CO2 emission --- pine plantations --- time study --- energy efficiency --- agroenvironmental mapping --- energy crop --- Jatropha curcas L. --- land suitability --- bio-based supply chains --- integrated biomass logistical center --- mixed integer programming model

Listing 1 - 10 of 10
Sort by