Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Hadoop (plate-forme informatique) --- Données massives. --- Big data. --- Fichiers (informatique) --- File organization (Computer science) --- Organisation. --- Données massives.
Choose an application
Le Big Data est désormais bien établi ! Il a atteint son paroxysme ces dernières années avec les objets connectés, l'intégration des capteurs dans les objets de la vie courante (voiture, réfrigérateur, télévision, etc.). Ces objets produisent des données en streaming. Beaucoup de cas d'usage et de modèles économiques s'appuient aujourd'hui sur des données générées en streaming. Cet ouvrage est un manuel didactique qui a pour but de vous aider à développer les compétences de base nécessaires pour valoriser les données produites en streaming. Que vous soyez freelance, consultant, Data Scientist, Architecte, Développeur ou Manager, cet ouvrage vous aidera à : - Comprendre les concepts et notions essentiels pour aborder avec aisance la gestion des données streaming ; - Appréhender et mettre en oeuvre les architectures nécessaires pour ingérer efficacement les données générées en streaming, notamment le Data Lake, les bus d'événements, les architectures Lambda, les architectures kappa, et les architectures hybrides ; - Monter en compétence sur les technologies de l'écosystème Hadoop dédiées à l'ingestion et au traitement des données produites en streaming, notamment Apache Kafka, Spark Streaming, Flume, Apache Samza, Apache Storm et S4. Pour faciliter l'atteinte de ces trois objectifs, chaque chapitre s'achève par un rappel des points clés et un guide d'étude" --
Données --- Data transmission systems. --- Données massives. --- Big data. --- Hadoop (plate-forme informatique) --- Streaming (télécommunications) --- Transmission. --- Données --- Données massives. --- Streaming (télécommunications)
Choose an application
"Depuis 2015, Spark s'impose comme le standard de-facto pour le big data : en apportant simplicité d'usage, puissance de calcul, analyses en temps réel, algorithmes de machine learning et deep learning, le tout accessible en Python. Spark est devenu la porte d'entrée incontournable des projets de valorisation de données. Alors que vient de sortir Spark 3avec son lot d'innovations (Koalas, DeltaLake, et gestion des GPU), les environnements simplifiés « clicks boutons » sont légion (DataBricks, Dataiku, RapidMiner, etc.). Mais pour les utiliser à bon escient, il vous faudra comprendre son fonctionnement interne de Spark afin de paramétrer correctement votre cluster et vos applications. C'est ce que propose ce livre : vous emmener dans une compréhension fine des tenants et aboutissants de Spark. L'analyse des données n'est utile que dans des cas business précis. C'est pourquoi nous insistons sur une méthode d'analyse des données qui vous permettra de connaître les étapes d'un projet de machine learning, et les questions indispensables à se poser pour réussir une analyse pertinente. Nous l'illustrons via un exemple complet d'une entreprise (virtuelle) de location de vélo en libre service. Ainsi, en lisant ce livre, vous maîtriserez l'outil et la méthode adéquats pour valoriser vos données de manière éclairée, vous assurant une meilleure efficacité et rentabilité de vos projets data."
Listing 1 - 3 of 3 |
Sort by
|