Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (3)

Listing 1 - 6 of 6
Sort by

Book
Surface Modification of Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.


Book
Surface Modification of Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.


Book
Surface Modification of Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.


Book
Corrosion and Degradation of Materials
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.

Keywords

Technology: general issues --- Chemical engineering --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle


Book
Corrosion and Degradation of Materials
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.

Keywords

AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle


Book
Corrosion and Degradation of Materials
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.

Keywords

Technology: general issues --- Chemical engineering --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze-thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium-lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe-nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze-thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium-lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe-nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve

Listing 1 - 6 of 6
Sort by