Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
Technology: general issues --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50 --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
Technology: general issues --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Listing 1 - 6 of 6 |
Sort by
|