Listing 1 - 5 of 5 |
Sort by
|
Choose an application
In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.
high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys
Choose an application
In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.
Research & information: general --- high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys --- high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys
Choose an application
Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.
Technology: general issues --- Chemical engineering --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle
Choose an application
Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.
AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle
Choose an application
Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.
Technology: general issues --- Chemical engineering --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze-thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium-lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe-nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze-thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium-lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe-nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve
Listing 1 - 5 of 5 |
Sort by
|