Narrow your search
Listing 1 - 9 of 9
Sort by

Book
Coherent lidar turbulence measurement for gust load alleviation
Authors: --- ---
Year: 1996 Publisher: Edwards, California : National Aeronautics and Space Administration, Dryden Flight Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Analysis of data from NASA B-57B gust gradient program : final report
Authors: --- ---
Year: 1985 Publisher: Tullahoma, Tenn. : [Huntsville, Ala.] : Atmospheric Science Division, University of Tennessee Space Institute ; George C. Marshall Space Flight Center, National Aeronautics and Space Administration,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Gust response analysis of a turbine cascade
Authors: ---
Year: 2001 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Finite element aircraft simulation of turbulence
Authors: ---
Year: 1997 Publisher: Moffett Field, Calif. : National Aeronautics and Space Administration, Ames Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
An experimental device for generating high frequency perturbations in supersonic wind tunnels
Authors: --- ---
Year: 1996 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Lewis Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Remote Sensing of Atmospheric Conditions for Wind Energy Applications
Authors: ---
ISBN: 3038979430 3038979422 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented..


Book
Numerical Simulation of Wind Turbines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book contains the research contributions belonging to the Special Issue "Numerical Simulation of Wind Turbines", published in 2020-2021. They consist of 15 original research papers and 1 editorial. Different topics are discussed, from innovative design solutions for large and small wind turbine to control, from advanced simulation techniques to noise prediction. The variety of methods used in the research contributions testifies the need for a holistic approach to the design and simulation of modern wind turbines and will be able to stimulate the interest of the wind energy community.

Keywords

large-scale wind turbine balde --- computational aeroacoustics --- sound source detection --- low Mach number turbulent flows --- NACA0012 airfoil --- fluid–structure interaction --- wind turbine --- atmospheric boundary layer --- composite materials --- gusts --- wind energy --- actuator line method --- wind turbine simulation --- regularization kernel --- small wind turbine (SWT) --- computational fluid dynamics (CFD) --- composites --- fluid–structure interaction (FSI) --- VAWT --- gurney flap --- CFD --- RBF --- power augmentation --- Darrieus --- turbulence --- experiments --- turbine wake --- turbine size --- large-eddy simulation --- actuator surface model --- wind turbine wake --- actuator disk model --- dynamic mode decomposition --- coherent structures --- wake meandering --- vertical axis wind turbine (VAWT) --- Savonius turbine --- deformable blades --- power coefficient --- blade load --- fluid-structure interaction (FSI) --- uncertainty quantification --- blade damage --- AEP --- winglet --- computational fluid dynamics (CFD), wind energy --- renewable energy --- rotor blade --- tip vortices --- aerodynamics --- ansys fluent --- savonius turbine --- icewind turbine --- static torque --- three-dimensional simulation --- Delayed DES --- H-Darrieus --- micro wind power generation --- wind turbine control --- load mitigation --- individual pitch control --- lifting line free vortex wake --- vortex methods --- pitch --- stall --- engineering codes --- n/a --- fluid-structure interaction


Book
Numerical Simulation of Wind Turbines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book contains the research contributions belonging to the Special Issue "Numerical Simulation of Wind Turbines", published in 2020-2021. They consist of 15 original research papers and 1 editorial. Different topics are discussed, from innovative design solutions for large and small wind turbine to control, from advanced simulation techniques to noise prediction. The variety of methods used in the research contributions testifies the need for a holistic approach to the design and simulation of modern wind turbines and will be able to stimulate the interest of the wind energy community.

Keywords

Technology: general issues --- large-scale wind turbine balde --- computational aeroacoustics --- sound source detection --- low Mach number turbulent flows --- NACA0012 airfoil --- fluid–structure interaction --- wind turbine --- atmospheric boundary layer --- composite materials --- gusts --- wind energy --- actuator line method --- wind turbine simulation --- regularization kernel --- small wind turbine (SWT) --- computational fluid dynamics (CFD) --- composites --- fluid–structure interaction (FSI) --- VAWT --- gurney flap --- CFD --- RBF --- power augmentation --- Darrieus --- turbulence --- experiments --- turbine wake --- turbine size --- large-eddy simulation --- actuator surface model --- wind turbine wake --- actuator disk model --- dynamic mode decomposition --- coherent structures --- wake meandering --- vertical axis wind turbine (VAWT) --- Savonius turbine --- deformable blades --- power coefficient --- blade load --- fluid-structure interaction (FSI) --- uncertainty quantification --- blade damage --- AEP --- winglet --- computational fluid dynamics (CFD), wind energy --- renewable energy --- rotor blade --- tip vortices --- aerodynamics --- ansys fluent --- savonius turbine --- icewind turbine --- static torque --- three-dimensional simulation --- Delayed DES --- H-Darrieus --- micro wind power generation --- wind turbine control --- load mitigation --- individual pitch control --- lifting line free vortex wake --- vortex methods --- pitch --- stall --- engineering codes --- n/a --- fluid-structure interaction


Book
Numerical Simulation of Wind Turbines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book contains the research contributions belonging to the Special Issue "Numerical Simulation of Wind Turbines", published in 2020-2021. They consist of 15 original research papers and 1 editorial. Different topics are discussed, from innovative design solutions for large and small wind turbine to control, from advanced simulation techniques to noise prediction. The variety of methods used in the research contributions testifies the need for a holistic approach to the design and simulation of modern wind turbines and will be able to stimulate the interest of the wind energy community.

Keywords

Technology: general issues --- large-scale wind turbine balde --- computational aeroacoustics --- sound source detection --- low Mach number turbulent flows --- NACA0012 airfoil --- fluid–structure interaction --- wind turbine --- atmospheric boundary layer --- composite materials --- gusts --- wind energy --- actuator line method --- wind turbine simulation --- regularization kernel --- small wind turbine (SWT) --- computational fluid dynamics (CFD) --- composites --- fluid–structure interaction (FSI) --- VAWT --- gurney flap --- CFD --- RBF --- power augmentation --- Darrieus --- turbulence --- experiments --- turbine wake --- turbine size --- large-eddy simulation --- actuator surface model --- wind turbine wake --- actuator disk model --- dynamic mode decomposition --- coherent structures --- wake meandering --- vertical axis wind turbine (VAWT) --- Savonius turbine --- deformable blades --- power coefficient --- blade load --- fluid-structure interaction (FSI) --- uncertainty quantification --- blade damage --- AEP --- winglet --- computational fluid dynamics (CFD), wind energy --- renewable energy --- rotor blade --- tip vortices --- aerodynamics --- ansys fluent --- savonius turbine --- icewind turbine --- static torque --- three-dimensional simulation --- Delayed DES --- H-Darrieus --- micro wind power generation --- wind turbine control --- load mitigation --- individual pitch control --- lifting line free vortex wake --- vortex methods --- pitch --- stall --- engineering codes --- n/a --- fluid-structure interaction

Listing 1 - 9 of 9
Sort by